what is the value of 2tan²theta +cos²theta -2. if theta is an acute angle and sin theta = cos theta
Answers
Answered by
55
Answer:
1/2
Step-by-step explanation:
⇒ sinθ = cosθ
⇒ sinθ/cosθ = 1
⇒ tanθ = 1 ...(1)
Therefore,
⇒ tan²θ = 1
⇒ sec²θ - 1 = 1 {tan²θ = sec²θ - 1}
⇒ sec²θ = 2 ⇒ cos²θ = 1/2 ..(2)
Hence,
2tan²θ + cos²θ - 2
2(1) + (1/2) - 2
1/2
Answered by
115
Answer:
Given :-
if theta is an acute angle and sin theta = cos theta
To Find :-
value of 2tan²theta +cos²theta
Solution :-
We are knowing that
sin theta = cos theta
sin theta/cos theta = 1
tan theta = 1 (1)
Now
tan² theta = 1²
tan²theta = 1
sec² theta - 1 = 1
sec² theta = 1 + 1
sec² theta = 2
Now,
cos² theta = sec²theta = ½
Now,
2(1)² + 1/2 - 2
2 × 1 + 1/2 - 2
2 + 1/2 - 2
(2 - 2) + 1/2
1/2
Similar questions