Math, asked by Advika4656, 3 days ago

what is the value of​

Attachments:

Answers

Answered by Anonymous
3

We are asked to find the exact value of the following equation:

$\longrightarrow \sqrt{41 + \sqrt{54 + \sqrt{88 + \sqrt{128 + \sqrt{256}}}}}$

Hint: Simplify the radical by breaking the radicand up into a product of known factors, assuming positive real numbers.

  • Radicand - The number under the inclusion bar of the radical sign.

  • Product - The result of two numbers being multiplied together.

  • Factors - One of two or more expressions thar are multiplier together to get a product.

Solution:

Simplifying each expressions by arranging the expressions in the radical sign and by performing addition.

\implies \sqrt{41 + \sqrt{54 + \sqrt{88 + \sqrt{128 + \sqrt{256}}}}}\\

\implies \sqrt{41 + \sqrt{54 +  \sqrt{88 + \sqrt{128 + 16}}}}\\

\implies \sqrt{41 + \sqrt{54 +  \sqrt{88 + \sqrt{144}}}}\\

\implies \sqrt{41 + \sqrt{54 +  \sqrt{88 + 12}}}\\

\implies \sqrt{41 + \sqrt{54 +  \sqrt{100}}}\\

\implies \sqrt{41 + \sqrt{54 +  10}}\\

\implies \sqrt{41 + 8}\\

\implies \sqrt{49}\\

\implies \boxed{\:\:7\:\:}\\

Hence, the value of given expression is 7.

Answered by kvalli8519
3

\rm⇢ \: \:  \sqrt{41 +  \sqrt{54 +  \sqrt{88 +  \sqrt{128 +  \sqrt{256} } } } }

\rm⇢ \: \:  \sqrt{41 +  \sqrt{54 +  \sqrt{88 +  \sqrt{128 + 16} } } }

\rm⇢ \: \:  \sqrt{41 +  \sqrt{54 +  \sqrt{88 +  \sqrt{144} } } }

\rm⇢ \: \:  \sqrt{41 + 54 +  \sqrt{88 + 12} }

 \rm⇢ \: \: \sqrt{41 +  \sqrt{54 +  \sqrt{100} } }

\rm⇢ \: \:  \sqrt{41 +  \sqrt{54 + 10} }

\rm⇢ \: \:  \sqrt{41 +  \sqrt{64} }

\rm⇢ \: \:  \sqrt{41 + 8}

\rm⇢ \: \:  \sqrt{49}

\rm⇢ \: \: 7

FINAL ANSWER :

The Value of  \sqrt{41 +  \sqrt{54 +  \sqrt{88 +  \sqrt{128 +  \sqrt{256} } } } } \: is 7 .

Similar questions