Math, asked by Mool53, 4 months ago

What is the value of ∫ 8 x3 dx.

Answers

Answered by pulakmath007
0

\displaystyle \sf{  \int 8 {x}^{3} dx }  = 2 {x}^{4}  + c

Given :

The integral

\displaystyle \sf{  \int 8 {x}^{3} dx }

To find :

Integrate the integral

Formula :

\displaystyle \sf{ \int  {x}^{n} dx =  \frac{ {x}^{n + 1} }{n + 1} + c }

Solution :

Solution :Step 1 of 2 :

Write down the given Integral

Here the given Integral is

\displaystyle \sf{  \int 8 {x}^{3} dx }

Step 2 of 2 :

Integrate the integral

\displaystyle \sf{  \int 8 {x}^{3} dx }

\displaystyle \sf{  = 8 \int  {x}^{3} dx }

\displaystyle \sf{  = 8  \times  \frac{ {x}^{3 + 1} }{3 + 1}   + c \:  \: }\:  \:  \: \bigg[ \:  \because \:\int  {x}^{n} dx =  \frac{ {x}^{n + 1} }{n + 1} + c  \:  \bigg]

\displaystyle \sf{  = 8  \times  \frac{ {x}^{4} }{4}   + c \:  \: }

\displaystyle \sf{  = 2 {x}^{4}   + c \:  \: }

Where c is integration constant

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

Similar questions