Math, asked by Ravi062, 1 year ago

what is the value of (81+82+....+130)

Answers

Answered by MANKOTIA
2
this is required answer
Attachments:
Answered by mysticd
2

 Given \: sequence \: 81+82+\cdot\cdot\cdot+130\:is \:an \:A.P

 First \:term (a) = 81

 Common \: difference (d) = a_{2} - a_{1} \\= 82 - 81 \\= 1

 \boxed { \pink { n^{th} \:term (a_{n}) = a+(n-1)d }}

 a_{n} = 130 \: (given)

 \implies a + (n-1)d = 130

 \implies 81 + (n-1) \times 1 = 130

 \implies 81 + n-1= 130

 \implies 80 + n= 130

 \implies  n= 130 - 80

 \implies  n= 50

 \boxed { \pink { Sum\:of \:n \:terms (S_{n}) = \frac{n}{2}\Big(a+a_{n}\Big) }}

 </p><p>[tex]Now , Sum \:of \:50\:terms (S_{50}) \\= \frac{50}{2} \Big( 81 + 130\Big) \\= 25 \times 211\\= 5275

Therefore.,

\red{ Sum \:of \:50\:terms (S_{50})}\green {= 5275 }

•••♪

Similar questions