Math, asked by dwipkarmakar, 20 days ago

what is the value of a×a+1/a×a​

Attachments:

Answers

Answered by Anonymous
41

Given :-

 \:  \:  \:  \:  \bullet \:  \rm \: a +  \dfrac{1}{a}  =  \dfrac{1}{ \sqrt{3} - 1 }

To find:- Value of a² + 1/a²

‎‎‎‎‎‎‎ㅤㅤㅤㅤㅤㅤㅤㅤㅤ__________________________

Solution:-

ㅤㅤㅤㅤ❍Let's do squaring on both sides for the given equation.

 \:  \:  \:  \mapsto \:  \rm \:  \bigg(a +  \dfrac{1}{a}  \bigg) {}^{2}  =  \bigg( \dfrac{1}{ \sqrt{3} - 1 }  \bigg) {}^{2}

☆ Expanding using formulae :-

• (a + b)² = a² + 2ab + b²

• (a -b )² = a² -2ab + b²

 \:  \:  \:  \:  \mapsto \rm \: a{}^{2}  +  \dfrac{1}{a {}^{2} }  + 2.a. \dfrac{1}{a}  =  \dfrac{1}{ (\sqrt{3} - 1)  {}^{2} }

 \:  \:  \:  \:  \mapsto \rm \: a{}^{2}  +  \dfrac{1}{a {}^{2} }  + 2  =  \dfrac{1}{ (\sqrt{3}  ) {}^{2}  + (1) {}^{2}   -  2( \sqrt{3} )(1)  }

 \:  \:  \:  \:  \mapsto \rm \: a{}^{2}  +  \dfrac{1}{a {}^{2} }  + 2  =  \dfrac{1}{ 4  -  2 \sqrt{3} }

 \:  \: \: \: \: \mapsto \:  \rm \: a {}^{2}  +  \dfrac{1}{a {}^{2} }  =  \dfrac{1}{4  - 2  \sqrt{3} }  - 2

 \:  \: \: \: \: \: \mapsto \rm \: a {}^{2}  +  \dfrac{1}{a {}^{2} }  =  \dfrac{1 - 2(4  -  2 \sqrt{3} )}{4  -  2 \sqrt{3} }

 \:  \: \: \: \: \: \mapsto \rm \: a {}^{2}  +  \dfrac{1}{a {}^{2} }  =  \dfrac{1 - 8   + 4 \sqrt{3} }{4  -  2 \sqrt{3} }

☆ Multiplying with its Rationalizing factor of denominator.

 \:  \: \: \: \: \: \mapsto \rm \: a {}^{2}  +  \dfrac{1}{a {}^{2} }  =  \dfrac{ - 7   +  4 \sqrt{3} }{4  -  2 \sqrt{3} }  \times  \dfrac{4  + 2 \sqrt{3} }{4  +  2 \sqrt{3} }

 \:  \: \: \: \: \:   \mapsto \rm \: a {}^{2}  +  \dfrac{1}{a {}^{2} }  =  \dfrac{ - 7 (4 + 2 \sqrt{3})   +  4 \sqrt{3} (4 + 2 \sqrt{3}) }{(4) {}^{2}  - 12 }

 \:  \:  \: \: \: \: \mapsto \rm \: a {}^{2}  +  \dfrac{1}{a {}^{2} }  =  \dfrac{ -28  - 14  \sqrt{3}   +  16 \sqrt{3}  + 24 }{4 }

 \:  \: \: \: \: \:  \mapsto \rm \: a {}^{2}  +  \dfrac{1}{a {}^{2} }  =  \dfrac{ -4 + 2 \sqrt{3}  }{4 }

 \:  \: \: \: \: \:\mapsto \rm \: a {}^{2}  +  \dfrac{1}{a {}^{2} }  =   \cancel\dfrac{ -4}{ 4} +   \cancel\dfrac{2 \sqrt{3} }{4}

 \:  \:  \: \: \: \: \mapsto \: \:  \:   \rm \:  - 1 +  \dfrac{ \sqrt{3} }{2}  \pink \bigstar

So, the correct answer is Option-B

Similar questions