What is the value of (cos square 67-sin square 23)?
chirag8874695183:
oooooooooooo
Answers
Answered by
4
Hey there!
We know that,
cos²B - sin²A = cos(A + B) * cos ( A - B)
Now,
cos²67° - sin²23°
= cos(67 + 23 ) * cos( 67 - 23 )
= cos ( 90 ) * cos45
= 0 * 1/√2 .
= 0
cos²67 -sin²23 = 0 .
Quick Alternative : [ cos²67-sin²23 = cos²(90-23) - sin²23 = sin²23 - sin²23 = 0 ]
[ cos²67-sin²23 = cos²67-sin²(90-67) = cos²67-cos²67 = 0 ]
Hope helped!
We know that,
cos²B - sin²A = cos(A + B) * cos ( A - B)
Now,
cos²67° - sin²23°
= cos(67 + 23 ) * cos( 67 - 23 )
= cos ( 90 ) * cos45
= 0 * 1/√2 .
= 0
cos²67 -sin²23 = 0 .
Quick Alternative : [ cos²67-sin²23 = cos²(90-23) - sin²23 = sin²23 - sin²23 = 0 ]
[ cos²67-sin²23 = cos²67-sin²(90-67) = cos²67-cos²67 = 0 ]
Hope helped!
Answered by
1
To find:
Cos^2 67 - Sin^2 23
Solution:
By formula,
Cos^2A - Sin^2B = Cos ( A + B ) * Cos ( A - B )
Here,
A = 67
B = 23
Substituting,
We get,
Cos (67 + 23 ) * Cos( 67 - 23 )
Cos ( 90 ) * cos ( 45 )
Substituting values,
0 * 1/√2 .
Hence, Cos^2 67 - Sin^2 23 = 0
Similar questions
Science,
8 months ago
Chemistry,
8 months ago
Math,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago
Computer Science,
1 year ago