Math, asked by yashtidke3, 2 months ago

what is the value of cosec 75​

Answers

Answered by chandan454380
0

Answer:

The answer is \sqrt 6-\sqrt 2

Step-by-step explanation:

\cos ec75^\circ=\frac{1}{\sin 75^\circ}=\frac{1}{\sin(45^\circ+30^\circ)}\\

             =\frac{1}{\sin 45^\circ\cos30^\circ+\sin 30^\circ\cos45^\circ }\\=\frac{1}{\frac{1}{\sqrt 2}\times \frac{\sqrt 3}{2}+\frac{1}{2}\times \frac{1}{\sqrt 2}}\\=\frac{1}{\frac{\sqrt 3+1}{2\sqrt 2}}=\frac{2\sqrt 2}{\sqrt 3+1}\\=\frac{2\sqrt 2}{\sqrt 3+1}\times \frac{\sqrt 3-1}{\sqrt 3-1}\\=\frac{2\sqrt2(\sqrt 3-1)}{3-1}=\sqrt 2(\sqrt 3-1)=\sqrt 6-\sqrt 2

Using \sin (A+B)=\sin A\cos B+\cos A\sin B

Similar questions