Math, asked by akjfbslao, 1 month ago

what is the value of (cosx + sinx ) / (cosx - sinx ) 1) tan(pie / 4+ x ) 2) tan ( pie / 4-x ) 3) tanx 4) ccotx solved it​

Answers

Answered by ajr111
5

Answer:

1st is the right option

\underline{\underline{ tan \bigg(x + \dfrac{\pi}{4}\bigg)}}

Step-by-step explanation:

Question :

\dfrac{cosx+sinx}{cosx-sinx}

To Find :

The value of given expression

Solution :

Dividing the numerator and denominator by cosx in the given expression

: \implies \dfrac{\bigg(\dfrac{cosx+sinx}{cosx} \bigg)}{\bigg(\dfrac{cosx-sinx}{cosx} \bigg)}

: \implies \dfrac{1 + tanx}{1 - tanx}

We know that tan45° = 1

So,

: \implies \dfrac{1 + tanx}{1 -(1) tanx}

: \implies \dfrac{tan45^{\circ} + tanx}{1 - tan45^{\circ}\times tanx}

We know that,

\boxed{tan (A + B ) = \dfrac{tanA + tanB}{1 - tanAtanB} }

Here, A = 45 and B = x

So,

: \implies \dfrac{tan45^{\circ} + tanx}{1 - tan45^{\circ}\times tanx} = tan(45 + x)

we know that in radians 45 is also written as π/4

So,

: \implies tan(x + 45^{\circ} ) = tan \bigg(x + \dfrac{\pi}{4}\bigg)

Hence the final result is

\therefore \underline{ \boxed { \mathbf{{\dfrac{cosx+sinx}{cosx-sinx} = tan \bigg(x + \dfrac{\pi}{4}\bigg) }}}}

Hope it helps!!

Answered by GraceS
4

\sf\huge\bold{Answer:}

Given :

 ⟶ \frac{( \cos \: x+  \sin \: x ) }{ (\cos \: x  - \sin \: x  ) } \\

To find :

Value of

\frac{( \cos \: x+  \sin \: x ) }{ (\cos \: x  - \sin \: x  ) }\\

Solution :

 = \frac{( \cos \: x+  \sin \: x ) }{ (\cos \: x  - \sin \: x  ) } \\

Step 1 : Dividing cos x in both numerator and denominator

 = \frac{( \frac{ \cos \: x+  \sin \: x  }{\cos \: x} )}{( \frac{ \cos \: x  - \sin \: x  }{\cos \: x} ) }  \\

Step 2 : Simplifying terms by cutting

 =  \frac{ (\frac{  \cos \: x }{ \cos \: x } +  \frac{ \sin \: x }{ \cos \: x } ) }{( \frac{  \cos \: x }{ \cos \: x }  -   \frac{ \sin \: x }{ \cos \: x })}  \\

We know,

 \implies \:  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  =  \tan( \alpha )  \\

Step 3 : Using above identity,simplifying the term

 =  \frac{1 +  \tan \: x }{1 -  \tan \: x }

Similarly,

 =  \frac{1 +  \tan \: x }{1 -  (1)(\tan \: x )}

Step 4 : Converting the ratio to fit into tan x identity.

 \implies \: 1 =  \tan(45 \degree)

 =  \frac{ \tan(45 \degree)  +  \tan \: x }{1 -(1)(  \tan \: x) }

 \implies \:  \tan( \alpha  +  \beta )  =  \frac{ \tan( \alpha )  + \tan( \beta )  }{1 -  \tan( \alpha ) \tan( \beta )  }  \\

Step 5 : Inserting values in the identity,we get

=  \frac{ \tan45 \degree  +  \tan \: x }{1 -(\tan45 )(  \tan \: x) }

 =  \tan(45 \degree + x)

Step 6 : Converting degrees into radians

 \implies \: 45 \degree \:  =  \frac{\pi}{4}  \\

 =  \tan(x +  \frac{\pi}{4} )

 \therefore

\fbox{Solution :}

 \implies\frac{( \cos \: x+  \sin \: x ) }{ (\cos \: x  - \sin \: x  ) }    =  \tan(x +  \frac{\pi}{4} )   \\

Similar questions