Math, asked by raju83771, 8 months ago

What is the value of Cot 60°- Cos 45°?

A) (9 - 2√3)/9 B) (2√6 - 1)/√3 C) (1 - 2√3)/2 D) (√2 - √3)/√6

Answers

Answered by pulakmath007
3

cot 60° - cos 45° = (√2 - √3)/√6

Given :

The expression cot 60° - cos 45°

To find :

The value of cot 60° - cos 45° is

A) (9 - 2√3)/9

B) (2√6 - 1)/√3

C) (1 - 2√3)/2

D) (√2 - √3)/√6

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is cot 60° - cos 45°

Step 2 of 2 :

Find the value of the expression

cot 60° - cos 45°

\displaystyle \sf{ =  \frac{1}{ \sqrt{3} }  -  \frac{1}{ \sqrt{2} }   }

[ LCM of the denominators = √6 ]

\displaystyle \sf{ =  \frac{ \sqrt{2}  -  \sqrt{3} }{ \sqrt{ 6} } }

Hence the correct option is D) (√2 - √3)/√6

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

#SPJ3

Similar questions