Math, asked by hmuskan147, 8 months ago

what is the value of d for an A.P., if t3 =12 and t7 =36 ?​

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\textsf{In an A.P,}\;\mathsf{t_3=12\;\;\&\;\;t_7=36}

\underline{\textbf{To find:}}

\textsf{The common difference d}

\underline{\textbf{Solution:}}

\mathsf{t_3=12\;\implies\;a+2d=12}------(1)

\mathsf{t_7=36\;\implies\;a+6d=36}------(2)

\mathsf{(2)-(1)\;\implies}

\mathsf{(a+6d)-(a+2d)=36-12}

\mathsf{a+6d-a-2d=36-12}

\mathsf{4d=24}

\implies\mathsf{d=\dfrac{24}{4}}

\implies\boxed{\mathsf{d=6}}

\underline{\textbf{Formula used:}}

\boxed{\begin{minipage}{8cm}$\\\textsf{The n th term of the A.P, a, a+d, a+2d, . . . . .is}\\\\\mathsf{t_n=a+(n-1)d}\\$\end{minipage}}

Similar questions