Math, asked by manubaitha8, 3 months ago

What is the value of Dx for solving the simultaneous equations 3x+2y=11
and 7x-4y=9 by Cramer’s rule?

Answers

Answered by VAMPlRE
66

  \huge \star \huge\rm  \: Solution

By Cramer's rule ,

[tex] \sf \bold {D_ \bold{x} =

\left|

\begin{array}{cc}

\bold {\ c_{1} \: \: \: \: b_{1}} \\

\bold{c_{2} \: \: \: \: c_{2}}

\end{array}

\right| }[/tex]

‎ 

‎ 

[tex]\sf \bold{D_{x}} =

\left|

\begin{array}{cc}

\bold{11 \: \: \ \: \: \: 2\:}\\

\bold{ 9 \: \: \: \: \: ( - 4)}

\end{array}

\right| [/tex]

 \sf \bold D_{x}  =  [ \bold{11 \times ( - 4) ] - [9 \times 2}]

‎ 

\sf \bold{D_{x}} = \bold{ ( \bold - 44 \:)} \: -  \bold{(18 )}</p><p>

  

  \sf \pink{D_{x} =    -  \sf {  62}}

Therefore, the value of Dx is -62 .

Answered by honparkhevishal
7

Step-by-step explanation:

D=3×(-4)-7×2

=-12-14

D= -26

Dx=2×9-(-4)×(-11)

=18-(-14)

18+44

Dx= -62

Similar questions