What is the value of Dx for solving the simultaneous equations 3x+2y=11
and 7x-4y=9 by Cramer’s rule?
Answers
Answered by
66
By Cramer's rule ,
[tex] \sf \bold {D_ \bold{x} =
\left|
\begin{array}{cc}
\bold {\ c_{1} \: \: \: \: b_{1}} \\
\bold{c_{2} \: \: \: \: c_{2}}
\end{array}
\right| }[/tex]
[tex]\sf \bold{D_{x}} =
\left|
\begin{array}{cc}
\bold{11 \: \: \ \: \: \: 2\:}\\
\bold{ 9 \: \: \: \: \: ( - 4)}
\end{array}
\right| [/tex]
Therefore, the value of Dx is -62 .
Answered by
7
Step-by-step explanation:
D=3×(-4)-7×2
=-12-14
D= -26
Dx=2×9-(-4)×(-11)
=18-(-14)
18+44
Dx= -62
Similar questions