Math, asked by mokshikashah14, 1 month ago

what is the value of k if one of the root of quadratic equation X² - 4x +k = 0, is 2+ root 3​

Answers

Answered by varadad25
1

Answer:

The value of k is 1.

Step-by-step-explanation:

We have given that,

One root of the quadratic equation x² - 4x + k = 0 is \displaystyle{\sf\:2\:+\:\sqrt{3}}

We have to find the value of k.

The given quadratic equation is

\displaystyle{\sf\:x^2\:-\:4x\:+\:k\:=\:0}

\displaystyle{\implies\sf\:k\:=\:4x\:-\:x^2}

By substituting \displaystyle{\sf\:x\:=\:2\:+\:\sqrt{3}}, we get,

\displaystyle{\implies\sf\:k\:=\:4\:(\:2\:+\:\sqrt{3}\:)\:-\:(\:2\:+\:\sqrt{3}\:)^2}

\displaystyle{\implies\sf\:k\:=\:8\:+\:4\:\sqrt{3}\:-\:[\:(\:2\:)^2\:+\:2\:\times\:2\:\times\:\sqrt{3}\:+\:(\:\sqrt{3}\:)^2\:]}

\displaystyle{\implies\sf\:k\:=\:8\:+\:4\:\sqrt{3}\:-\:(\:4\:+\:4\:\sqrt{3}\:+\:3\:)}

\displaystyle{\implies\sf\:k\:=\:8\:+\:\cancel{4\:\sqrt{3}}\:-\:4\:-\:\cancel{4\:\sqrt{3}}\:-\:3}

\displaystyle{\implies\sf\:k\:=\:8\:-\:4\:-\:3}

\displaystyle{\implies\sf\:k\:=\:4\:-\:3}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:k\:=\:1\:}}}}

The value of k is 1.

Similar questions