Math, asked by abhoyghosh, 7 hours ago

what is the value of log a^2/bc + log b^2/ca + log c^2/ab​

Answers

Answered by mathdude500
3

 \green{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\: \: log\bigg[\dfrac{ {a}^{2} }{bc} \bigg] + log\bigg[\dfrac{ {b}^{2} }{ca} \bigg] + log\bigg[\dfrac{ {c}^{2} }{ab} \bigg]

We know,

\red{\rm :\longmapsto\:\boxed{\tt{ logx + logy = log(xy) \: }}}

\rm \:  =  \: log\bigg[\dfrac{ {a}^{2} }{bc} \times \dfrac{ {b}^{2} }{ca}  \times \dfrac{ {c}^{2} }{ab}  \bigg]

\rm \:  =  \: log\bigg[\dfrac{ {a}^{2}  {b}^{2}  {c}^{2} }{ {a}^{2} {b}^{2}  {c}^{2} } \bigg]

\rm \:  =  \: log1

\rm \:  =  \: 0

Hence,

\rm \implies\:\boxed{\tt{  log\bigg[\dfrac{ {a}^{2} }{bc} \bigg] + log\bigg[\dfrac{ {b}^{2} }{ca} \bigg] + log\bigg[\dfrac{ {c}^{2} }{ab} \bigg] = 0}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore More :-

\boxed{\tt{ logx - logy = log \frac{x}{y} \: }}

\boxed{\tt{ log {x}^{y} = y \: logx \: }}

\boxed{\tt{  log_{x}(y) =  \frac{logx}{logy}  \: }}

\boxed{\tt{  log_{x}(x) =  1\: }}

\boxed{\tt{  log_{ {x}^{a} }( {x}^{b} ) =   \frac{b}{a} \: }}

\boxed{\tt{  log_{ {x}^{a} }( {y}^{b} ) =   \frac{b}{a} log_{x}(y) \: }}

\boxed{\tt{  {a}^{ log_{a}(x) }  = x \: }}

\boxed{\tt{  {a}^{y log_{a}(x) }  =  {x}^{y}  \: }}

Similar questions