Math, asked by kamran435, 1 year ago

What is the value of log root 5 base 3 root 5

Answers

Answered by mohamedkingh29
14

Answer:

Step-by-step explanation:

if you mean

log(√5)^3√5

=log(5^1/2)^3√5

=1.5√5log(5)

then use calculation

Answered by harendrachoubay
7

The value of \dfrac{1}{3} \dfrac{\log 5}{\log 5}=0.333.

Step-by-step explanation:

We have,

\log _5({\sqrt[3]{5})

To find, the vaue of \log _5({\sqrt[3]{5})=?

\log _5({\sqrt[3]{5})

=\dfrac{\log\sqrt[3]{5})}{\log 5}

[ ∵ \log _x(a)=\dfrac{\log a}{\log x}]

=\dfrac{(\log 5^{\dfrac{1}{3} } )}{\log 5}

=\dfrac{1}{3} \dfrac{\log 5}{\log 5}

=\dfrac{1}{3}

=0.333

Hence, the value of \dfrac{1}{3} \dfrac{\log 5}{\log 5}=0.333.

Similar questions