What is the value of p³(q-r)³ +q³(r-p)³+r³(p-q)³ ?( No useless answers please)
Answers
Step-by-step explanation:
Given:-
p³(q-r)³ +q³(r-p)³+r³(p-q)³
To find:-
What is the value of p³(q-r)³ +q³(r-p)³+r³(p-q)³ ?
Solution:-
Given expression is p³(q-r)³ +q³(r-p)³+r³(p-q)³
=>[p(q-r)]³+[q(r-p)]³+[r(p-q)]³
=>(pq-pr)³+(qr-pq)³+(pr-qr)³
This is in the form of a³+b³+c³
Here, a=pq-pr
b=qr-pq
c=pr-qr
and a+b+c=0
=>pq-pr+qr-pq+pr-qr
=>(pq-pq)+(pr-pr)+(qr-qr)
=>0
We know that
If a+b+c=0 then a³+b³+c³=3abc
(pq-pr)³+(qr-pq)³+(pr-qr)³
=>3(pq-pr)(qr-pq)(pr-qr)
=>3pqr(q-r)(r-p)(p-q)
Answer:-
p³(q-r)³ +q³(r-p)³+r³(p-q)³=3pqr(q-r)(r-p)(p-q)
Used formula:-
- If a+b+c=0 then a³+b³+c³=3abc
3pqr(p - q)(q - r)(r - p)
Step-by-step explanation:
Given Equation is p³(q - r)³ + q³(r - p)³ + r³(p - q)³
⇒ [p(q - r)]³ + [q(r - p)]³ + [r(p - q)]³
Let a = p(q - r), b = q(r - p), c = r(p - q)
∴ a + b + c = p(q - r) + q(r - p) + r(p - q)
= pq - pr + qr - qp + rp - rq
= 0
We know that when a + b + c = 0, then a³ + b³ + c³ = 3abc
⇒ 3(pq - qr)(qr - qp)(rp - rq)
I hope it will be help you