Math, asked by CHSURYASASIDHAR5784, 9 months ago

What is the value of r(1/2)?

Answers

Answered by pulakmath007
1

\displaystyle \sf{ \Gamma \bigg( \frac{1}{2} \bigg) } \:  =  \sqrt{\pi}

Correct question :

\displaystyle \sf{ What \: is \:  the \: value \: of \:  \: \:  \Gamma \bigg( \frac{1}{2} \bigg) }

Given :

\displaystyle \sf{ \Gamma \bigg( \frac{1}{2} \bigg) }

To find :

The value

Formula :

For m > 0 , n > 0

\displaystyle  \sf  \Beta (m,n) =  \frac{\Gamma(m)\Gamma(n)}{\Gamma(m + n)}

Solution :

Step 1 of 3 :

Define Beta function

We know that for m , n > 0

\displaystyle  \sf  \Beta (m,n) =2 \int\limits_{0}^{ \frac{\pi}{2} }  {sin}^{2m - 1} x \: {cos}^{2n - 1} x \:   \, dx

Step 2 of 3 :

Find the value of \displaystyle \sf{   \Beta  \bigg(  \frac{1}{2} , \frac{1}{2} \bigg) }

\displaystyle \sf{ We  \: put  \: m =  \frac{1}{2}  \:  \: and \:  \: n =  \frac{1}{2}  }

Thus we get

\displaystyle \sf{  \Beta   \bigg(  \frac{1}{2} , \frac{1}{2} \bigg)}

\displaystyle  \sf   = 2\int\limits_{0}^{ \frac{\pi}{2} }  \:   \, dx

\displaystyle  \sf   = 2 \: x \bigg| _{0}^{ \frac{\pi}{2} }

\displaystyle  \sf   = 2  \bigg[  \frac{\pi}{2}  - 0\bigg]

\displaystyle  \sf   = 2  \times  \frac{\pi}{2}

\displaystyle  \sf   =\pi

Step 3 of 3 :

\displaystyle \sf{ Find\:  the \: value \: of \:  \: \:  \Gamma \bigg( \frac{1}{2} \bigg) }

We know that

\displaystyle  \sf  \Beta (m,n) =  \frac{\Gamma(m)\Gamma(n)}{\Gamma(m + n)}

\displaystyle \sf{ We  \: put  \: m =  \frac{1}{2}  \:  \: and \:  \: n =  \frac{1}{2}  }

\displaystyle \sf{  \Beta  \bigg(  \frac{1}{2} , \frac{1}{2} \bigg)} =  \frac{ \Gamma \bigg( \dfrac{1}{2} \bigg)\Gamma \bigg( \dfrac{1}{2} \bigg)}{\Gamma (1)}

Putting the values we get

\displaystyle \sf{ \pi=  \frac{ {\Gamma \bigg( \dfrac{1}{2} \bigg)}^{2} }{1}}\:  \:  \: \bigg[ \:  \because \:\Gamma (1)  = 1\bigg]

\displaystyle \sf{ \implies {\Gamma \bigg( \dfrac{1}{2} \bigg)}^{2} = \pi}

\displaystyle \sf{ \implies {\Gamma \bigg( \dfrac{1}{2} \bigg)}^{} = \sqrt{\pi} }

 \boxed{ \:  \: \displaystyle \sf{ \Gamma \bigg( \dfrac{1}{2} \bigg) } =  \sqrt{\pi}  \:  \: }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. write the expression for gradient and divergence

https://brainly.in/question/32412615

2. prove that the curl of the gradient of

(scalar function) is zero

https://brainly.in/question/19412715

#SPJ3

Similar questions