What is the value of root of 1+cos theta/1- cos theta
Answers
Answered by
2
Answer:
Solution:
LHS=\sqrt{\frac{(1+cos\theta)}{(1-cos\theta)}}
Multiply numerator and denominator by (1+cos\theta), we get
=\sqrt{\frac{(1+cos\theta)(1+cos\theta)}{(1-cos\theta)(1+cos\theta)}}
=\sqrt{\frac{(1+cos\theta)^{2}}{(1^{2}-cos^{2}\theta)}}
=\sqrt{\frac{(1+cos\theta)^{2}}{sin^{2}\theta}}
/* We know the Trigonometric identity:
\boxed {1-cos^{2}\theta = sin^{2}\theta} */
=\frac{(1+cos\theta)}{sin\theta}
= \frac{1}{sin\theta}+\frac{cos\theta}{sin\theta}
= cosec\theta+cot\theta
=$RHS$
Therefore,
\sqrt{\frac{(1+cos\theta)}{(1-cos\theta)}}= cosec\theta+cot\theta
Answered by
5
Heya friend !☺
- Your answer is given in the image attached above. Kindly refer it !
_______________________
Thank you ! ♠
I hope it helps you ! :)
Attachments:
Similar questions
Accountancy,
4 months ago
Science,
4 months ago
Math,
4 months ago
Math,
9 months ago
Social Sciences,
9 months ago
English,
1 year ago
CBSE BOARD XII,
1 year ago