Math, asked by gaurav38966, 1 year ago

what is the value of sin 15​

Answers

Answered by AbhijithPrakash
3

Answer:

\sin \left(15^{\circ \:}\right)=\dfrac{\sqrt{2-\sqrt{3}}}{2}\quad \begin{pmatrix}\mathrm{Decimal:}&0.25882\dots \end{pmatrix}

Step-by-step explanation:

\sin \left(15^{\circ \:}\right)

\mathrm{Write}\:\sin \left(15^{\circ \:}\right)\:\mathrm{as}\:\sin \left(\dfrac{30^{\circ \:}}{2}\right)

=\sin \left(\dfrac{30^{\circ \:}}{2}\right)

\mathrm{Using\:the\:half\:angle\:identity}:\quad \sin \left(\dfrac{x}{2}\right)=\sqrt{\dfrac{1-\cos \left(x\right)}{2}}

=\sqrt{\dfrac{1-\cos \left(30^{\circ \:}\right)}{2}}

\mathrm{Use\:the\:following\:trivial\:identity}:\quad \cos \left(30^{\circ \:}\right)=\dfrac{\sqrt{3}}{2}

=\sqrt{\dfrac{1-\dfrac{\sqrt{3}}{2}}{2}}

\sqrt{\dfrac{1-\dfrac{\sqrt{3}}{2}}{2}}

\dfrac{1-\dfrac{\sqrt{3}}{2}}{2}

\mathrm{Join}\:1-\dfrac{\sqrt{3}}{2}:\quad \dfrac{2-\sqrt{3}}{2}

=\dfrac{\dfrac{2-\sqrt{3}}{2}}{2}

\mathrm{Apply\:the\:fraction\:rule}:\quad \dfrac{\dfrac{b}{c}}{a}=\dfrac{b}{c\:\cdot \:a}

=\dfrac{2-\sqrt{3}}{2\cdot \:2}

\mathrm{Multiply\:the\:numbers:}\:2\cdot \:2=4

=\dfrac{2-\sqrt{3}}{4}

=\sqrt{\dfrac{2-\sqrt{3}}{4}}

\mathrm{Apply\:radical\:rule\:}\sqrt[n]{\dfrac{a}{b}}=\dfrac{\sqrt[n]{a}}{\sqrt[n]{b}},\:\quad \mathrm{\:assuming\:}a\ge 0,\:b\ge 0

=\dfrac{\sqrt{2-\sqrt{3}}}{\sqrt{4}}

\sqrt{4}=2

=\dfrac{\sqrt{2-\sqrt{3}}}{2}

=\dfrac{\sqrt{2-\sqrt{3}}}{2}

Similar questions