what is the value of sin(2A+2B)
Answers
Answered by
1
Explanation:
Sum of the angle of a triangle is equal to 180
∘
∠A+∠B+∠C=180
∘
∠B+∠C=180
∘
−∠A
sin(B+C)=sin(180
∘
−A)=sinA
Use the trigonometry identities, sinC+sinD=2sin
2
C+D
cos
2
C−D
So,
Sin2A+sin2B+sin2C=sin2A+2sin(
2
2×(B+C)
)cos(
2
2×(B−C)
)
=sin2A+2sin(B+C)cos(B−C)=sin2A+2sinAcos(B−C)
We know that sin2A=2sinA×cosA
Therefore,
=2sinAcosA+2sinAcos(B−C)=2sinA(cosA+cos(B−C))=2sinA(cos(180
∘
−(B+C))+cos(B−C))
=2sinA(−cos(B+C)+cos(B−C))
We know that cos(A+B)=cosAcosB−sinAsinB and cos(A−B)=cosAcosB+sinAsinB
=2sinA(cosAcosB+sinAsinB−(cosAcosB−sinAsinB))=4sinA×sinB×sinC
Similarly we can do for sin2a+2b
Similar questions