Math, asked by jagrativanya, 1 year ago

What is the value of :

sin^3 60 cot 30 - 2 sec^2 45 + 3 cos 60 tan 45 - tan^2 60

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\mathsf{sin^360^\circ\;cot\,30^\circ-2\;sec^245^\circ+3\;cos\,60^\circ\;tan\,45^\circ-tan^260^\circ}

\underline{\textbf{To find:}}

\textsf{The value of}

\mathsf{sin^360^\circ\;cot\,30^\circ-2\;sec^245^\circ+3\;cos\,60^\circ\;tan\,45^\circ-tan^260^\circ}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{sin^360^\circ\;cot\,30^\circ-2\;sec^245^\circ+3\;cos\,60^\circ\;tan\,45^\circ-tan^260^\circ}

\mathsf{=\left(\dfrac{\sqrt3}{2}\right)^3\sqrt3-2\;(\sqrt2)^2+3\left(\dfrac{1}{2}\right)(1)-(\sqrt3)^2}

\mathsf{=\left(\dfrac{3\sqrt3}{8}\right)\sqrt3-2\;(2)+\dfrac{3}{2}-3}

\mathsf{=\dfrac{9}{8}-4+\dfrac{3}{2}-3}

\mathsf{=\dfrac{9}{8}+\dfrac{3}{2}-7}

\mathsf{=\dfrac{9+12-56}{8}}

\mathsf{=\dfrac{21-56}{8}}

\mathsf{=\dfrac{-35}{8}}

\implies\boxed{\mathsf{sin^360^\circ\;cot\,30^\circ-2\;sec^245^\circ+3\;cos\,60^\circ\;tan\,45^\circ-tan^260^\circ=\dfrac{-35}{8}}}

\textbf{Standard trigonometric table:}

\left\begin{array}{|c|c|c|c|c|c|}\cline{1-6}&0^{\circ}&30^{\circ}&45^{\circ}&60^{\circ}&90^{\circ}\\\cline{1-6}\bf\,sin\theta&0&\frac{1}{2}&\frac{1}{\sqrt2}&\frac{\sqrt3}{2}&1\\\cline{1-6}\bf\,cos\theta&1&\frac{\sqrt3}{2}&\frac{1}{\sqrt2}&\frac{1}{2}&0\\\cline{1-6}\bf\,tan\theta&0&\frac{1}{\sqrt3}&1&\sqrt3&\infty\\\cline{1-6}\end{array}\right

Answered by vinod04jangid
0

Answer:

\frac{-35}{8}

Step-by-step explanation:

Given:-  sin^{3}60° cot 30° - 2 sec^{2} 45° + 3 cos 60° tan 45° - tan^{2} 60°

To Find:- The value of the above equation.

Solution:-

=  sin^{3}60° cot 30° - 2 sec^{2} 45° + 3 cos 60° tan 45° - tan^{2} 60°

= (\frac{\sqrt{3} }{2} )^{3} \sqrt{3} - 2 (\sqrt{2} )^{2} + 3 (\frac{1}{2}) (1) - (\sqrt{3} )^{2}

= \frac{9}{8} - 4 + \frac{3}{2} - 3

= \frac{9 + 12 - 56}{8}

= \frac{-35}{8}

#SPJ2

Similar questions