Math, asked by bhajisk916, 6 months ago

what is the value of sin60°- sin 30°?​

Answers

Answered by Asterinn
6

 \implies  \sf\sin60 \degree - \sin30 \degree

We know that :-

 \boxed{ \bf \sin60 \degree =  \dfrac{ \sqrt{3} }{2} }

 \boxed{ \bf \sin30 \degree =  \dfrac{ 1 }{2} }

\implies  \sf\sin60 \degree - \sin30 \degree = \dfrac{ \sqrt{3} }{2} - \dfrac{ 1 }{2}

LCM= 2

\implies  \sf\sin60 \degree - \sin30 \degree = \dfrac{ \sqrt{3}  - 1}{2}

Answer :

 \bf \dfrac{ \sqrt{3}  - 1}{2}

________________________

\blue{ \underline{ \bf    \red{{Learn} \: more}}}

1. Cosθ = base / hypotenuse

2. cossecθ = 1/ sinθ

3. sec θ = 1/cosθ

4. Cotθ = 1/ tanθ

5. Sin²θ+ Cos²θ= 1

6. Sec²θ - tan²θ = 1

7. cosec ²θ - cot²θ = 1

8. sin(90°−θ) = cos θ

9. cos(90°−θ) = sin θ

10. tan(90°−θ) = cot θ

11. cot(90°−θ) = tan θ

12. sec(90°−θ) = cosec θ

13. cosec(90°−θ) = sec θ

14. Sin2θ = 2 sinθ cosθ

15. cos2θ = Cos²θ- Sin²θ

\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &   \bf{0}^{ \circ} &  \bf{30}^{ \circ} &   \bf{45}^{ \circ}  &  \bf{60}^{ \circ} &   \bf{90}^{ \circ}  \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\  \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\  \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 &  \sqrt{3}  & \rm Not \: De fined \\  \\ \rm cosec A &  \rm Not \: De fined & 2&  \sqrt{2}  & \dfrac{2}{ \sqrt{3} } &1 \\  \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }&  \sqrt{2}  & 2 & \rm Not \: De fined \\  \\ \rm cot A & \rm Not \: De fined &  \sqrt{3} & 1  &  \dfrac{1}{ \sqrt{3} } & 0 \end{array}

Answered by Anonymous
106

♣ Qᴜᴇꜱᴛɪᴏɴ :

\huge\boxed{\sf{\sin \left(60^{\circ \:}\right)-\sin \left(30^{\circ \:}\right)}}

★═════════════════★

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\sf{\sin \left(60^{\circ \:}\right)-\sin \left(30^{\circ \:}\right)=\dfrac{\sqrt{3}-1}{2}}}

★═════════════════★

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\mathrm{Use\:the\:following\:trivial\:identity}:\quad \sin \left(60^{\circ \:}\right)=\dfrac{\sqrt{3}}{2}

\mathrm{Use\:the\:following\:trivial\:identity}:\quad \sin \left(30^{\circ \:}\right)=\dfrac{1}{2}

=\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}

\mathrm{Apply\:rule}\:\dfrac{a}{c}\pm \dfrac{b}{c}=\dfrac{a\pm \:b}{c}

\large\boxed{\sf{=\dfrac{\sqrt{3}-1}{2}}}

Similar questions