what is the value of tab 15
Answers
Answered by
2
-0.8559934009. tan15
Answered by
0
here is value of tan 15
Clearly, tan15°=tan(45°-30°)
We know that,
tan(A-B)=(tanA-tanB)/(1+tanA.tanB)
So, tan15°=tan(45°-30°)
=(tan 45°-tan30°)/(1+tan45°.tan30°)
=[{1-(1/√3)}/{1+(1)(1/√3)}]
=(√3–1)/(√3+1)
Rationalising the denominator, we have,
Tan15°= {(√3–1)×(√3–1)}/{(√3+1)×(√3–1)}
=(3+1–2√3)/(3–1)
=(4–2√3)/2
=2-√3.
Aliter
Let θ=15°
Then, tanθ=tan15°
So, tan2θ=tan2(15°)=tan30°
We know that,
Tan2θ=2tan theta/(1-tan^2 theta)
=>Tan30°=2tan15°/(1-tan^2 15°)
=>1/√3 =2tan15°/(1-tan^2 15°)
=>1-tan^2 15=2√3 tan 15°
=>tan^2 15° + 2√3 tan15° - 1 = 0
Now, by Quadratic Formula, we have
=> Tan15°=[-2√3 ± √{(-2√3)^2 - 4(1)(-1)}]/2(1)
=(-2√3+√16)/2
=(4–2√3)/2
=2-√3
suhaas12327:
editi ur answer
Similar questions