Math, asked by mgromvi2865, 10 months ago

What is the value of Tan 45° - 1/√3 Sec 60°?

A) (1 - 2√3)/2 B) (√2 - √3)/√6 C) (3 - 2√3)/3 D) (1 - 2√2)/2

Answers

Answered by mishradeeksha273
0

Answer:

(c) 3-2✓3/3 is right answer of this question

Answered by hukam0685
1

\bf \tan(45^{ \circ} )  -  \frac{1}{ \sqrt{3}   } \sec(60^{ \circ}) =  \frac{3 - 2 \sqrt{3} }{3} \\

Option C is correct.

Given:

  • A trigonometric expression.
  •  \tan(45^{ \circ} )  -  \frac{1}{ \sqrt{3}   } \sec(60^{ \circ})\\

To find:

  • Find the value of trigonometric expression from the options.
  • A) (1 - 2√3)/2
  • B) (√2 - √3)/√6
  • C) (3 - 2√3)/3
  • D) (1 - 2√2)/2

Solution:

Concept/Formula to be used:

  • Put the value of trigonometric ratios.
  •  \tan( {45}^{ \circ} )  = 1 \\
  •  \sec( {60}^{ \circ} )  = 2 \\

Step 1:

Put the values in the expression.

 \tan(45^{ \circ} )  -  \frac{1}{ \sqrt{3}   } \sec(60^{ \circ}) = 1 -  \frac{1}{\sqrt{3} } \times 2 \\

Step 2:

Simplify the value.

 = 1 -  \frac{2}{ \sqrt{3} }  \\

rationalize the denominator.

 = 1 -  \frac{2}{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3} }  \\

or

= 1 -  \frac{2 \sqrt{3} }{ 3 }    \\

or

 \frac{3 - 2 \sqrt{3} }{3}  \\

Thus,

\bf \tan(45^{ \circ} )  -  \frac{1}{ \sqrt{3}   } \sec(60^{ \circ}) =  \frac{3 - 2 \sqrt{3} }{3} \\

Option C is correct.

#SPJ3

Learn more:

1) Find the value of Tan2 60°+Cot2 30°/Sin2 30°+Cos2 60°

https://brainly.in/question/12613980

2) sin 60° + cot 45° - cosec 30°

Q 16. The value of

is:

sec 60° - cos 30° + tan 45º

4,5-9 4.3 +9 95-4 93 +4

a.

b.

d.

33

33

...

https://brainly.in/question/47792126

Similar questions