Math, asked by prashant4033, 1 year ago

What is the value of tan 45º + sin 60°- cos 30° as per Trigonometrical ratio?
b) 2
d) v​

Answers

Answered by nandibaruah111
3

See the attachment

Hope this helped you

Attachments:
Answered by zahaansajid
12

Answer:

The value of tan45° + sin60° - cos30° = 1

Step-by-step explanation:

\Diamond Trigonometric ratios are ratios of sides of a right-angled triangle

\Diamond There are 6 trigonometric ratios namely :

  1. sine \implies sin
  2. cosine \implies cos
  3. tangent \implies tan
  4. cosecant \implies cosec
  5. secant \implies sec
  6. cotangent \implies cot

\Diamond sin, cos, tan, cosec, sec and cot are the abbreviations of the trigonometric ratios

\Diamond The table given below shows the various values of the trigonometric ratios

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta &amp; \sf 0^{\circ} &amp; \sf 30^{\circ} &amp; \sf 45^{\circ} &amp; \sf 65^{\circ} &amp; \sf 90^{\circ} \\ \cline{1-6} $ \sin $ &amp; 0 &amp; $\dfrac{1}{2 }$ &amp; $\dfrac{1}{ \sqrt{2} }$ &amp; $\dfrac{ \sqrt{3}}{2}$ &amp; 1 \\ \cline{1-6} $ \cos $ &amp; 1 &amp; $ \dfrac{ \sqrt{ 3 }}{2} } $ &amp; $ \dfrac{1}{ \sqrt{2} } $ &amp; $ \dfrac{ 1 }{ 2 } $ &amp; 0 \\ \cline{1-6} $ \tan $ &amp; 0 &amp; $ \dfrac{1}{ \sqrt{3} } $ &amp; 1 &amp; $ \sqrt{3} $ &amp; $ \infty $   \\ \cline{1-6} \cot &amp; $ \infty $ &amp;$ \sqrt{3} $ &amp; 1 &amp; $ \dfrac{1}{\sqrt{3} } $ &amp;0 \\ \cline{1 - 6} \sec &amp; 1 &amp; $ \dfrac{2}{ \sqrt{3}} $ &amp; $ \sqrt{2} $ &amp; 2 &amp; $ \infty $ \\ \cline{1-6} \csc &amp; $ \infty $ &amp; 2 &amp; $ \sqrt{2 } $ &amp; $ \dfrac{ 2 }{ \sqrt{ 3 } } $ &amp; 1 \\ \cline{1 - 6}\end{tabular}} [tex]</p><p></p><p>[tex]\Diamond Hence

tan45° = 1

sin60° = \dfrac{\sqrt{3}}{2}

cos30° = \dfrac{\sqrt{3}}{2}

Substituting these values we get,

tan45° + sin60 - cos30

= 1 + \dfrac{\sqrt{3}}{2} - \dfrac{\sqrt{3}}{2}

= 1 + 0

= 1

Similar questions