what is the value of 'tan7 1/2' degree ? or tan7.5 value
Answers
Answer:
Step-by-step explanation:
7½° lies in the first quadrant.
Therefore, both sin 7½° and cos 7½° is positive.
For all values of the angle A we know that, sin (α - β) = sin α cos β - cos α sin β.
Therefore, sin 15° = sin (45° - 30°)
= 1√2∙√32 - 1√2∙12
= √32√2 - 12√2
= √3−12√2
Again, for all values of the angle A we know that, cos (α - β) = cos α cos β + sin α sin β.
Therefore, cos 15° = cos (45° - 30°)
cos 15° = cos 45° cos 30° + sin 45° sin 30°
= 1√2∙√32 + 1√2∙12
= √32√2 + 12√2
= √3+12√2
Now, tan 7½° = sin7½°cos7½°
= 2sin27½°2cos7½°sin7½°
= 1−cos15°sin15°
= 1−√3+12√2√3−12√2
= 2√2−√3−1√3−1
= (2√2−√3−1)(√3+1)(√3−1)(√3+1)
= 2√6−3−√3+2√2−√3−112
= √6 - √3 + √2 - 2
Therefore, tan 7½° = √6 - √3 + √2 - 2
THANK U..
tan15o=tan(60–45)o=tan60o−tan45o1+tan60o.tan45otan15o=tan(60–45)o=tan60o−tan45o1+tan60o.tan45o
⟹tan150=3–√−13–√+1⟹tan150=3−13+1
Let θ=7.50⟹2θ=15oθ=7.50⟹2θ=15o
Lett=tanθ=tan7.5oLett=tanθ=tan7.5o
⟹tan2θ=tan15o=3–√−13–√+1⟹tan2θ=tan15o=3−13+1
tan15o=tan2θ=2tanθ1−tan2θ=3–√−13–√+1tan15o=tan2θ=2tanθ1−tan2θ=3−13+1
⟹2t1−t2=