Math, asked by monjyotiboro, 2 months ago

What is the value of √-i, wherei=√-1​?

Answers

Answered by Tomaten
1

Answer:

\displaystyle \sqrt{-i}=-\frac{1}{2}\sqrt{2}+i\frac{1}{2}\sqrt{2}

Step-by-step explanation:

We want to find the value for \sqrt{-i}.

In the Real and Imaginary axis diagram, we can notice that the complex number i is 90 degrees anticlockwise from the positive Real axis. Therefore we can define i as:

\displaystyle i=e^{i\frac{\pi}{2}}

Substitute the value of i to \sqrt{-i}:

\sqrt{-i}=\sqrt{-e^{i\frac{\pi}{2}}

\sqrt{-i}=\sqrt{-1}\cdot\sqrt{e^{i\frac{\pi}{2}}}

\sqrt{-i}=ie^{i\frac{\pi}{4}}

Using Euler's formula:

e^{i\theta}=\cos \theta+i\sin \theta

e^{i\frac{\pi}{4} }=\cos \frac{\pi}{4}+i\sin \frac{\pi}{4}

e^{i\frac{\pi}{4} }=\frac{1}{2}\sqrt{2} +i\frac{1}{2}\sqrt{2}

Hence:

\sqrt{-i}=ie^{i\frac{\pi}{4}}

\displaystyle \sqrt{-i}=i\left(\frac{1}{2}\sqrt{2} +i\frac{1}{2}\sqrt{2}\right)

\displaystyle \sqrt{-i}=\left(i\frac{1}{2}\sqrt{2}-\frac{1}{2}\sqrt{2}\right)

Therefore, the square root of -i is:

\displaystyle \sqrt{-i}=-\frac{1}{2}\sqrt{2}+i\frac{1}{2}\sqrt{2}

Similar questions