Math, asked by athens70086, 1 year ago

what is the value of
 \sqrt{15 + 2 \sqrt{10} }
? ​

Answers

Answered by praneethks
1

Step-by-step explanation:

Let's take the √(15+2√10) be √x +√y.

On squaring on both sides we get

 {( \sqrt{x} +  \sqrt{y})}^{2} = 15 + 2 \sqrt{10}  =  >

x + y + 2 \sqrt{xy}  = 15 + 2 \sqrt{10} =  >

So

x+y=15 and xy=10 =>x= 10/y hence

y +  \frac{10}{y} = 15 =  >  {y}^{2} + 10 = 15y =  >

 {y}^2 - 15y + 10 = 0 =  >

y =  \frac{15 +  \sqrt{ {15}^{2}  - 4 \times 10} }{2}  \: or \:  \frac{15 -  \sqrt{ {15}^{2} - 4 \times 10 } }{2}

=> y= (15+√185)/2 or (15-√185)/2. So

x+y = 15 => x = 15-(15+√185)/2 or 15-(15-√185)/2 = (15+√185)/2 or

(15-√185)/2 So the square root of 15+2√10

 =  >  \sqrt{ \frac{15 +  \sqrt{185} }{2} }  +  \sqrt{ \frac{15 -  \sqrt{185} }{2} }  =  >

=> 3.7816313 + 0.836220512 =>

4.6178581 =>4.618 approximately. Hope it helps you.

Similar questions