Math, asked by leogerald793, 4 months ago

what is the value of (x + 1/x)^2

Answers

Answered by Flaunt
43

\huge\bold{\gray{\sf{Answer:}}}

Explanation:

Concept

two same value or two value having same power or two like terms gets cancelled and the resultant would be 1

\bold{\red{( { \frac{x + 1}{x}})^{2} }}

Here,a identity is used :-

 {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy

 =  > ( { \frac{x + 1}{x} })^{2}  =  \frac{ {x}^{2}  +  {(1)}^{2}  + 2x}{{x}^{2} }

 =  >   \frac{ {x}^{2} }{ {x}^{2} }  +  \frac{1}{ {x}^{2} }  +  \frac{2x}{ {x}^{2} }

\bold{ =  >  1 + \frac{1}{ {x}^{2} }  +  \frac{2}{x}  =  \frac{1}{ {x}^{2} }  + \frac{2}{x }  + 1}

Other related identies:

\bold{\boxed{ {(x -y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy}}

\bold{\boxed{ {x}^{3}   +   {y}^{3}  =  {x}^{3}  +  {y}^{3}   + 3xy(x + y)}}

\bold{\boxed{(x + y)(x  + z) =  {x}^{2}  + (y+ z)x + yz}}

\bold{\boxed{ {(x +y)}^{3}  =  {x}^{3}  +  {y}^{3}  +3xy[x+y]}}

Similar questions