Math, asked by kinjalsinghyadavo7, 9 months ago

What is the value of
x in 32^x*16^-2x=4*2^-5x​

Answers

Answered by BrainlyPopularman
23

GIVEN :

  \\ \implies{ \bold{ ({32}^{x})( {16}^{ - 2x}) = 4( {2}^{ - 5x})}}  \\

TO FIND :

• Value of 'x' = ?

SOLUTION :

  \\ \implies{ \bold{ ({32}^{x})( {16}^{ - 2x}) = 4( {2}^{ - 5x})}}  \\

• We know that –

  \\ \to \:  \: { \bold{ {2}^{1}  = 2}}  \\

  \\ \to \:  \: { \bold{ {2}^{2}  = 4}}  \\

  \\ \to \:  \: { \bold{ {2}^{3}  = 8}}  \\

  \\ \to \:  \: { \bold{ {2}^{4}  = 16}}  \\

  \\ \to \:  \: { \bold{ {2}^{5}  = 32}}  \\

• So , We should write this as –

  \\ \implies{ \bold{  \{({ {2}^{5} )}^{x} \}  \{({ {2}^{4}) }^{ - 2x} \} = ( {2}^{2} )( {2}^{ - 5x})}}  \\

• Using identity –

  \\ \implies{ \bold{ ({a}^{b})^{c} =  {a}^{bc} }}  \\

• So –

  \\ \implies{ \bold{({ {2}^{5x} )}  ({ {2}^{ - 8x}) }= ( {2}^{2} )( {2}^{ - 5x})}}  \\

• Using identity –

  \\ \implies{ \bold{ {a}^{b}.{a}^{c} =  {a}^{b + c} }}  \\

  \\ \implies{ \bold{({ {2}^{5x - 8x} )}  = ( {2}^{2 - 5x})}}  \\

  \\ \implies{ \bold{{ {2}^{ - 3x}}  = {2}^{2 - 5x}}}  \\

• Now compare –

  \\ \implies{ \bold{ - 3x = 2 - 5x}}  \\

  \\ \implies{ \bold{5x - 3x = 2}}  \\

  \\ \implies{ \bold{2x = 2}}  \\

  \\ \implies \large{ \boxed{ \bold{x = 1}}}  \\

Answered by ThakurRajSingh24
20

SOLUTION :

{\tt{32^x \:×\: 16^(-2x) \:= 4 \:×\: 2^(-5x)}}

\longrightarrow {\tt{2^(5x)\: × \:2^(-8x) \:= \:2^2\: - 2^(-5x)}}

\longrightarrow {\tt{2^(-3x) \: =\: 2^(-5x +2)}}

\longrightarrow {\tt{ - 3x \:= \:-5x\: +\: 2}}

\longrightarrow {\tt{ -3x \:+\: 5x\: = \:2}}

\longrightarrow {\tt{ 2x\: = 2 }}

\longrightarrow {\tt{\red{ x = 1}}}

Some exponents formulas,

•a^0=1

•a^1=a

•√a=a^1/2

•(a^m)^p = a^(mp)

•a^ma^n=a^(m+n)

Similar questions