Math, asked by amanchavhan200, 9 months ago

what is the value of x with solution​

Attachments:

Answers

Answered by VasuMavani
0

Answer:

X = 2 and Y = 3

Step-by-step explanation:

You have two ways to solve it:

1) Take lcm and multiply then solve.

2) Short cut:

Factors of 45 is 3,5,15,9. So, you should think a value of y such that 4y + 3 is either of these values. So, if you take y = 3, then 4y + 3 = 15, and 45/ 4y + 3 = 3. Now, left sided term should be 2. So, from that you can get X as 2.

You have to verify it again for second equation.

Answered by Anonymous
4

Step-by-step explanation:

\tt \dfrac{8}{3x - 2}  + \dfrac{45}{4y + 3}  = 5; \: \:  \: \dfrac{12}{3x - 2}  + \dfrac{30}{4y + 3}  = 1

:  \implies \tt \dfrac{8}{3x - 2}  + \dfrac{45}{4y + 3}  = 5 \: \:  \bigg \lgroup  \bf equation \: (1) \bigg \rgroup \\  \\

: \implies \tt \dfrac{12}{3x - 2}  + \dfrac{30}{4y + 3}  = 1\: \:  \bigg \lgroup  \bf equation \: (2) \bigg \rgroup \\  \\

\bf Put \:  \dfrac{1}{3x-2}=m   \: \: and  \: \:  \dfrac{1}{4y +3} = n</p><p></p><p>

: \implies \tt 8m + 45n = 5\: \:  \bigg \lgroup  \bf equation \: (3) \bigg \rgroup \\  \\

: \implies \tt 12m  -  30n = 1\: \:  \bigg \lgroup  \bf equation \: (4) \bigg \rgroup \\  \\

_______________________

 \bf Multiplying  \: equation \:  (3)  \: by \:  2  \: and \:  equation \:  (4)  \: by \:  2

: \implies \tt 24m + 135n = 15\: \:  \bigg \lgroup  \bf equation \: (5) \bigg \rgroup \\  \\

: \implies \tt 24m  -  60n = 2\: \:  \bigg \lgroup  \bf equation \: (6) \bigg \rgroup \\  \\

______________________

\bf Substracting  \: equation \:  (6)  \: from  \: equation  \: (5)  \: we  \: get,

\tt 24m \:  +  \: 135n \:  =  \: 15 \\  \tt \dfrac{  \: 24m  \: -  \: 60n =  \: 2  \qquad}{ 195n  \: =  \: 13} \\   \tt  n \:  =  \dfrac{13}{195} \\  \tt n \:  =  \:\dfrac{1}{15}

______________________

\bf Put \:  the \:  value \:  of \:  n  \: =  \: \dfrac{1}{15}  \: in \:  equation  \: (4)  \: we  \: get,</p><p>

: \implies \tt 12m  -  30n = 1 \\

: \implies \tt 12m  -  30 \times  \dfrac{1}{15} = 1 \\

: \implies \tt 12m  -  2 = 1 \\

: \implies \tt 12m  = 1 + 2 \\

: \implies \tt 12m  = 3

: \implies \tt m  = \dfrac{3}{12} \\

: \implies \tt m  = \dfrac{1}{4} \\

 \bf Substitute  \: m \:  = \:  \dfrac{1}{3x-2}  \: and  \: n  \: = \:  \dfrac{1}{4y+3}

: \implies \tt m  = \dfrac{1}{4} \\

: \implies \tt \dfrac{1}{3x-2} = \dfrac{1}{4} \\

: \implies \tt 3x-2 = 4 \\

: \implies \tt 3x = 4  + 2 \\

: \implies  \red{\tt x = 6 }\\

--------------------------

: \implies \tt n = \dfrac{1}{15} \\

: \implies \tt \dfrac{1}{4y+3}= \dfrac{1}{15} \\

: \implies \tt 4y+3= 15 \\

: \implies \tt 4y= 15 - 3 \\

: \implies \red{ \tt y= 3}

Similar questions