Math, asked by auktapooja, 10 months ago

what is the value (x-1/x)^2 plezz help​

Answers

Answered by JunoirJumper
6

\displaystyle{\rm{\bigg(\frac{x-1}{x}\bigg)^2 }}\\\\\displaystyle{\rm{=\frac{(x-1)^2}{(x)^2} }}\\\\\displaystyle{\rm{=\frac{x^2+1^2-2\times x \times 1}{x^2} }}\\\\\boxed{\displaystyle{\rm{=\frac{x^2-2x+1}{x^2} }}}\:\: \cdots(Final\ answer)

\rule{170}2

\displaystyle{\rm{\bigg(x-\frac{1}{x}\bigg)^2 }}

\displaystyle{\rm{=(x)^2+\bigg(\frac{1}{x} \bigg)^2-2\times x \times \frac{1}{x} }}\\\\\boxed{\displaystyle{\rm{=x^2+\frac{1}{x^2}-2 }}}\:\: \cdots (Final\ answer)

Answered by shashimscp
0

Answer:

1 +1/x^2 - 2/x

Step-by-step explanation:

Given expression={(x/x)-(1/x)}^2

= 1^2 + 1/x^2 - 2/x

=1 +1/x^2 - 2/x

Similar questions