Math, asked by kashyappiyush808, 3 months ago

what is the volume of the box:24000,1200,,800,​

Attachments:

Answers

Answered by IdyllicAurora
9

\\\;\underbrace{\underline{\sf{Understanding\;the\;Concept\;:-}}}

Here the Concept of Volume of Cuboid has been used. We see that this a Paragraph Type Question. All the other things like colour and exterior surface area are just given to confuse and make the question hard. The main thing is, we need to find the Volume of the figure. The volume of the figure is the product of three dimensions. Here we can see that the dimensions are given and thus we can find the volume.

Let's do it !!

____________________________________________

Formula Used :-

\\\;\boxed{\sf{\pink{Volume\;of\;Cuboid\;=\;\bf{Length\:\times\:Breadth\:\times\:Height}}}}

____________________________________________

Solution :-

Given,

» Length of the Cuboid = 40 cm

» Breadth of the Cuboid = 30 cm

» Height of the Cuboid = 20 cm

We know that,

\;\sf{:\rightarrow\;\;Volume\;of\;Cuboid\;=\;\bf{Length\:\times\:Breadth\:\times\:Height}}

By applying values, we get

\\\;\sf{:\Longrightarrow\;\;Volume\;of\;Cuboid\;=\;\bf{40\:\times\:30\:\times\:20}}

\\\;\sf{:\Longrightarrow\;\;Volume\;of\;Cuboid\;=\;\bf{40\:\times\:30\:\times\:20}}

\\\;\sf{:\Longrightarrow\;\;Volume\;of\;Cuboid\;=\;\bf{1200\:\times\:20}}

\\\;\bf{:\Longrightarrow\;\;Volume\;of\;Cuboid\;=\;\bf{\orange{24000\;\;cm^{3}}}}

\\\;\underline{\boxed{\tt{Area\;\;of\;\;Cuboid\;\;=\;\bf{\purple{24000\;\;cm^{3}}}}}}

____________________________________________

More to know :-

\\\;\sf{\gray{\leadsto\;\;CSA\;of\;Cuboid\;=\;2(L\:+\:B)\;\times\;H}}

\\\;\sf{\gray{\leadsto\;\;CSA\;of\;Cuboid\;=\;2(LB\;+\;BH\;+\;LH)}}

\\\;\sf{\gray{\leadsto\;\;Diagonal\;of\;Cuboid\;=\;\sqrt{(L^{2}\;+\;B^{2}\;+\;H^{2})}}}

\\\;\sf{\gray{\leadsto\;\;Perimeter\;of\;Cuboid\;=\;4(Length\;+\;Breadth\;+\;Height)}}

Properties of Cuboid ::

  • Opposite edges are equal.

  • Adjacent Edges are perpendicular to each other.

  • Diagonals bisect each other at 90°.

Anonymous: fírѕt tσ cσmmєnt .. grєαt αnѕwєr
IdyllicAurora: Thanks mate :)
Answered by Anonymous
27

\\\;\underbrace{\underline{\sf{Understanding\;the\;Concept\;:-}}}

Here the Concept of Volume of Cuboid has been used. We see that this a Paragraph Type Question. All the other things like colour and exterior surface area are just given to confuse and make the question hard. The main thing is, we need to find the Volume of the figure. The volume of the figure is the product of three dimensions. Here we can see that the dimensions are given and thus we can find the volume.

Let's do it !!

____________________________________________

★ Formula Used :-

\\\;\boxed{\sf{\pink{Volume\;of\;Cuboid\;=\;\bf{Length\:\times\:Breadth\:\times\:Height}}}}

____________________________________________

★ Solution :-

Given,

» Length of the Cuboid = 40 cm

» Breadth of the Cuboid = 30 cm

» Height of the Cuboid = 20 cm

We know that,

\;\sf{:\rightarrow\;\;Volume\;of\;Cuboid\;=\;\bf{Length\:\times\:Breadth\:\times\:Height}}

By applying values, we get

\\\;\sf{:\Longrightarrow\;\;Volume\;of\;Cuboid\;=\;\bf{40\:\times\:30\:\times\:20}}

\\\;\sf{:\Longrightarrow\;\;Volume\;of\;Cuboid\;=\;\bf{40\:\times\:30\:\times\:20}}

\\\;\sf{:\Longrightarrow\;\;Volume\;of\;Cuboid\;=\;\bf{1200\:\times\:20}}

\\\;\bf{:\Longrightarrow\;\;Volume\;of\;Cuboid\;=\;\bf{\orange{24000\;\;cm^{3}}}}

\\\;\underline{\boxed{\tt{Area\;\;of\;\;Cuboid\;\;=\;\bf{\purple{24000\;\;cm^{3}}}}}}

____________________________________________

★ More to know :-

\\\;\sf{\gray{\leadsto\;\;CSA\;of\;Cuboid\;=\;2(L\:+\:B)\;\times\;H}}

\\\;\sf{\gray{\leadsto\;\;CSA\;of\;Cuboid\;=\;2(LB\;+\;BH\;+\;LH)}}

\\\;\sf{\gray{\leadsto\;\;Diagonal\;of\;Cuboid\;=\;\sqrt{(L^{2}\;+\;B^{2}\;+\;H^{2})}}}

\\\;\sf{\gray{\leadsto\;\;Perimeter\;of\;Cuboid\;=\;4(Length\;+\;Breadth\;+\;Height)}}

• Properties of Cuboid ::

Opposite edges are equal.

Adjacent Edges are perpendicular to each other.

Diagonals bisect each other at 90°.

Similar questions