Chemistry, asked by gokujane, 1 year ago

What is the wavelength of light emitted when the electron in a hydrogen atom undergoes transition from an energy level with n = 4 to an energy level with n = 2?

Answers

Answered by prmkulk1978
213
According to Formula :
Wave number=ν=R[1/n₁²  -1/n₂²]
where 
R=109678 cm⁻¹n1=2n2=4
ν=109678[1/2² - 1/4²]
  =109678[(4-1)/16]
   =109678x3/16
   
As we know that wave number=1/Wavelength
⇒ ν=1/λ
    λ=1/ν
      =1/[109678x3/16]
       =16/109678x3
       =486x10⁻⁷ cm
       =486x 10⁻⁹m
      = 486 nm

wavelength of light emitted is 486 nm
Answered by lublana
50

Given:

n_1=2,n_2=4

To find:

Wavelength of light emitted

Solution:

We know that

Wave number=\frac{1}{\lambda}=R(\frac{1}{n^2_1}-\frac{1}{n^2_2})

Where R=Rydberg constant=1.097\times 10^{7}/m

Using the formula

\frac{1}{\lambda}=1.097\times 10^7(\frac{1}{4}-\frac{1}{16})

\frac{1}{\lambda}=1.097\times 10^7(\frac{4-1}{16}

\frac{1}{\lambda}=1.097\times 10^7\times \frac{3}{16}

\frac{1}{\lambda}=0.2058\times 10^{7}/m

\lambda=\frac{1}{0.2058\times 10^{7}}m

Wavelength,\lambda=486\times 10^{-9} m=486 nm

1nm=10^{-9} m

Similar questions