What is the work done by gravity on a 2-kg mass raised through a vertical distance of 20-m?
W=PE= mgh. Use this formula to solve the problem.
VS YO!
Science
Quarter I-Module
Effect of Temperatur
to speed of Bound
8
WC
dadad
ysiu
o as
I vəzren
Answers
Explanation:
Climbing stairs and lifting objects is work in both the scientific and everyday sense—it is work done against the gravitational force. When there is work, there is a transformation of energy. The work done against the gravitational force goes into an important form of stored energy that we will explore in this section.
(a) The weight attached to the cuckoo clock is raised by a height h shown by a displacement vector d pointing upward. The weight is attached to a winding chain labeled with a force F vector pointing downward. Vector d is also shown in the same direction as force F. E in is equal to W and W is equal to m g h. (b) The weight attached to the cuckoo clock moves downward. E out is equal to m g h.
Figure 1. (a) The work done to lift the weight is stored in the mass-Earth system as gravitational potential energy. (b) As the weight moves downward, this gravitational potential energy is transferred to the cuckoo clock.
Let us calculate the work done in lifting an object of mass m through a height h, such as in Figure 1. If the object is lifted straight up at constant speed, then the force needed to lift it is equal to its weight mg. The work done on the mass is then W = Fd = mgh. We define this to be the gravitational potential energy (PEg) put into (or gained by) the object-Earth system. This energy is associated with the state of separation between two objects that attract each other by the gravitational force. For convenience, we refer to this as the PEg gained by the object, recognizing that this is energy stored in the gravitational field of Earth. Why do we use the word “system”? Potential energy is a property of a system rather than of a single object—due to its physical position. An object’s gravitational potential is due to its position relative to the surroundings within the Earth-object system. The force applied to the object is an external force, from outside the system. When it does positive work it increases the gravitational potential energy of the system. Because gravitational potential energy depends on relative position, we need a reference level at which to set the potential energy equal to 0. We usually choose this point to be Earth’s surface, but this point is arbitrary; what is important is the difference in gravitational potential energy, because this difference is what relates to the work done. The difference in gravitational potential energy of an object (in the Earth-object system) between two rungs of a ladder will be the same for the firs
Explanation:
Potential energy is energy stored in an object. This energy has the potential to do work. Gravity gives potential energy to an object. This potential energy is a result of gravity pulling downwards. The gravitational constant, g, is the acceleration of an object due to gravity. This acceleration is about 10 meters per second on earth. The formula for potential energy due to gravity is PE = mgh. As the object gets closer to the ground, its potential energy decreases while its kinetic energy increases.
In this case, a body of mass 5 kg kept at a height of 10 m. So the potential energy is given as 5 * 10 *10 = 500 J.
Hence, the potential energy of a body of mass 5 kg kept at a height of 10 m is 500 J.
DEADSOUL