Chemistry, asked by SparklingBoy, 1 month ago

What is the work function of the metal if the light of wavelength 4000 A° generates photoelectron of velocity 6 × 10⁵ m/s from it ?

⇝Don't Even think to Spam

⇝Try to Use LaTex

⇝Only proper LaTex containing answer will be marked As Brainliest

Answers

Answered by Atlas99
28

\texttt{\textsf{\huge{\underline{Solution}:}}}

____________________________

KE =  \frac{1}{2}  \times 9 \times   {10}^{ - 31}  \times (6 \times  {10}^{5} )^{2}

 = 162 \times  {10}^{ - 21} J≃eV

Energy \:\: of\: photon  \: E = \frac{12400}{4000}  = 3.1eV

E = ϕ + KE

3.1 =ϕ +1

ϕ= 2.1 eV

____________________________

♥︎If there is any mistake in this answer please forgive me.☺︎︎

Answered by kamalhajare543
64

\huge\color{blue}\boxed{\colorbox{lightgreen}{♧Given♧}}\bigstar

Mass  \: of \:  electron = 9 \times 10 {}^{ - 31} kg

Velocity  \: of  \: light = 3  \times 10 {}^{8} mg {}^{ - 1}

Planck  \: constant  = 6.626 \times 10 {}^{ - 34} Js

Charge  \: election = 1.6 \times 10 {}^{ - 19} JeV {}^{ - 1}

SOLUTION

Hv=ϕ+hv°

 \frac{1}{2} mv {}^{2}  + hc( \frac{1}{ λ} -  \frac{1}{λ})

Hv=ϕ+ \frac{1}{2} mv {}^{2}

ϕ =  \frac{6.626 \times 10 { {  {}^{34} \times 3 \times 10 {}^{8}  }^{} } }{4000 \times 10 {}^{ - 10} }  -  \frac{1}{2}  \times 9 \times 10 {} {}^{ - 31} \times(6 \times 10 {}^{3} ) {}^{2}

ϕ = 3.35 \times 10 {}^{ - 10} J

ϕ = 2.1 ev

{\mathfrak{\purple{Thanks}}}.

Similar questions