Physics, asked by XxRanixX, 1 year ago

what is the work to be done to increase the velocity of a car from 30 km h-1 to 60 km h^-1 if the mass of the car us 1500 kg?​

Answers

Answered by SnowySecret72
4

Answer:

156375 J

Solution:-

Mass of the car=1500 kg

Intial velocity of car=30 km h^-1

 =  \frac{30 \times 1000 \: m}{60 \times 60 \: sec}

 = 8.33 \: m  \: {s}^{ - 1}

Similarly;the final velocity of the car

v = 60 \: km \:  {s}^{ - 1}

 = 16.67 \: m  \: {s}^{ - 1}

The Intial kinetic energy of the car

e_{ki} =  \frac{1}{2}m  \: {u}^{2}

 =  \frac{1}{2} \times 1500 \: kg \times  {(8.33m \:  {s}^{ - 1} }^{2})

 = 52041.68 \:   j

The final kinetic energy of the car

 e_{kf} =  \frac{1}{2} \times  \frac{1}{2} \times  {(16.67m \:  {s}^{ - 1} })^{2}

 = 208416.68 \: j

_____________________

Thus the work done=change in kinetic energy

 = e_{kf} - e_{ki}

 = 208416.68 - 52041.68

=156375 J

Answered by aryanmathur112007
0

Explanation:

Mass of the car=1500 kg

Intial velocity of car=30 km h^-1

= \frac{30 \times 1000 \: m}{60 \times 60 \: sec}=

60×60sec

30×1000m

= 8.33 \: m \: {s}^{ - 1}=8.33ms

−1

Similarly;the final velocity of the car

v = 60 \: km \: {s}^{ - 1}v=60kms

−1

= 16.67 \: m \: {s}^{ - 1}=16.67ms

−1

The Intial kinetic energy of the car

e_{ki} = \frac{1}{2}m \: {u}^{2}e

ki

=

2

1

mu

2

= \frac{1}{2} \times 1500 \: kg \times {(8.33m \: {s}^{ - 1} }^{2})=

2

1

×1500kg×(8.33ms

−1

2

)

= 52041.68 \: j=52041.68j

The final kinetic energy of the car

e_{kf} = \frac{1}{2} \times \frac{1}{2} \times {(16.67m \: {s}^{ - 1} })^{2}e

kf

=

2

1

×

2

1

×(16.67ms

−1

)

2

= 208416.68 \: j=208416.68j

_____________________

Thus the work done=change in kinetic energy

= e_{kf} - e_{ki}=e

kf

−e

ki

= 208416.68 - 52041.68=208416.68−52041.68

=156375 J

Similar questions