Math, asked by mantashamanu6, 4 months ago

What is the work to be done to increase the velocity of a car from 36km/hr
to 72 km/hr if the mass of the car is 2000Kg?​

Answers

Answered by Anonymous
1

GIVEN :-

  • Velocity of car is increased by 36km/hr to 72km/hr.
  • Mass of car is 2000kg.

 \\

TO FIND :-

  • Work done.

 \\

TO KNOW :-

Work done is change is kinetic energy.

 \\   \boxed{\sf \: W =   \Delta K.E} \\  \\

Also ,

 \\   \boxed{\sf \: K.E =  \dfrac{1}{2} m {v}^{2} } \\  \\

Here ,

  • W → Work done
  • K.E → Kinetic energy
  • m → Mass of object
  • v → Velocity of object

 \\

SOLUTION :-

Converting factor is (5/18).

We have ,

  • Initial velocity (u) = 36km/hr

We will convert it into m/s.

Initial velocity = (5/18) × 36

Initial velocity = 10m/s

  • Final velocity (v) = 72km/hr

We will convert it into m/s.

Final velocity = (5/18) × 72

Final velocity = 20m/s

Mass of object (m) = 2000kg

 \\  \sf \: </strong><strong>W</strong><strong> = </strong><strong>F</strong><strong>inal \: </strong><strong>K.</strong><strong>E</strong><strong> - </strong><strong>I</strong><strong>nitial \: </strong><strong>K.E</strong><strong> \\  \\ </strong><strong>\</strong><strong>i</strong><strong>m</strong><strong>p</strong><strong>l</strong><strong>i</strong><strong>e</strong><strong>s</strong><strong> \sf \: </strong><strong>W</strong><strong> =  \</strong><strong>d</strong><strong>frac{1}{2} m {v}^{2}  -  \</strong><strong>d</strong><strong>frac{1}{2} m {u}^{2}  \\  \\  \\ </strong><strong>\</strong><strong>i</strong><strong>m</strong><strong>p</strong><strong>l</strong><strong>i</strong><strong>e</strong><strong>s</strong><strong> \sf \: </strong><strong>W</strong><strong> =  \</strong><strong>d</strong><strong>frac{1}{2} m( {v}^{2}  -  {u}^{2} ) \\  \\

Putting values we get,

 \\   \implies\sf \: W =  \dfrac{1}{ \cancel2} ( \cancel{2000}) \{( {20)}^{2}  -  {(10)}^{2}  \} \\  \\  \\ \implies \sf \: W = 1000(400 - 100) \\  \\   \\ \implies  \sf \: W = 1000(300) \\  \\  \\     \implies\underbrace{\boxed{\sf \: W = 300000J} }\\  \\

Hence , 300000J or 300kJ of work is done .

Similar questions