What is transformer ? Explain the principal construction working and uses &theory
Answers
Answered by
4
Working Principle of Transformer
The working principle of transformer is very simple. Mutual induction between two or more windings is responsible for transformation action in an electrical transformer.
Basic Theory of Transformer
Say you have one winding which is supplied by an alternating electrical source. The alternating current through the winding produces a continually changing flux or alternating flux that surrounds the winding. If any other winding is brought nearer to the previous one, obviously some portion of this flux will link with the second. As this flux is continually changing in its amplitude and direction, there must be a change in flux linkage in the second winding or coil. According to Faraday's law of electromagnetic induction, there must be an EMF induced in the second. If the circuit of the later winding is closed, there must be a current flowing through it. This is the simplest form of an electrical power transformer, and this is the most basic of working principle of transformer.
For better understanding, we are trying to repeat the above explanation in a more brief way here. Whenever we apply alternating current to an electric coil, there will be an alternating flux surrounding that coil. Now if we bring another coil near the first one, there will be an alternating flux linkage with that second coil. As the flux is alternating, there will be obviously a rate of change in flux linkage with respect to time in the second coil. Naturally emf will be induced in it as per Faraday's law of electromagnetic induction. This is the most basic concept of the theory of transformer.
The winding which takes electrical power from the source, is known as the primary winding of a transformer. Here in our above example, it is first winding.  The winding which gives the desired output voltage due to mutual induction in the transformer is commonly known as the secondary winding of the transformer. Here in our example, it is second winding.  The form mentioned above of a transformer is theoretically possible but not practically, because in open air very tiny portion of the flux of the first winding will link with second; so the current that flows through the closed circuit of later, will be so small in amount that it will be difficult to measure.
The working principle of transformer is very simple. Mutual induction between two or more windings is responsible for transformation action in an electrical transformer.
Basic Theory of Transformer
Say you have one winding which is supplied by an alternating electrical source. The alternating current through the winding produces a continually changing flux or alternating flux that surrounds the winding. If any other winding is brought nearer to the previous one, obviously some portion of this flux will link with the second. As this flux is continually changing in its amplitude and direction, there must be a change in flux linkage in the second winding or coil. According to Faraday's law of electromagnetic induction, there must be an EMF induced in the second. If the circuit of the later winding is closed, there must be a current flowing through it. This is the simplest form of an electrical power transformer, and this is the most basic of working principle of transformer.
For better understanding, we are trying to repeat the above explanation in a more brief way here. Whenever we apply alternating current to an electric coil, there will be an alternating flux surrounding that coil. Now if we bring another coil near the first one, there will be an alternating flux linkage with that second coil. As the flux is alternating, there will be obviously a rate of change in flux linkage with respect to time in the second coil. Naturally emf will be induced in it as per Faraday's law of electromagnetic induction. This is the most basic concept of the theory of transformer.
The winding which takes electrical power from the source, is known as the primary winding of a transformer. Here in our above example, it is first winding.  The winding which gives the desired output voltage due to mutual induction in the transformer is commonly known as the secondary winding of the transformer. Here in our example, it is second winding.  The form mentioned above of a transformer is theoretically possible but not practically, because in open air very tiny portion of the flux of the first winding will link with second; so the current that flows through the closed circuit of later, will be so small in amount that it will be difficult to measure.
Similar questions