Math, asked by riji31, 8 months ago

what is value of 'A'

the answer is 30° and 150°....
plzzz...don't spam....and explanation must...​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

Given,

 \cos^{2} ( \alpha ) - \sin( \alpha ) =  \frac{1}{4}

multiplying both side by 4, we get,

4 \cos^{2} ( \alpha ) - 4 \sin( \alpha )   = 1

 = 4(1 -  \sin^{2} ( \alpha )) - 4 \sin( \alpha )  - 1 = 0

 = 4 - 4 \sin^{2} ( \alpha )  - 4 \sin( \alpha )  - 1 = 0

Taking minus common and simplying,we get,

4 \sin^{2} ( \alpha )  + 4 \sin( \alpha )   - 3 = 0

4 \sin^{2} ( \alpha )  + 6 \sin( \alpha )  - 2 \sin( \alpha )  - 3 = 0

 = 2 \sin( \alpha ) (2 \sin( \alpha ) + 3) - 1(2 \sin( \alpha )   + 3) = 0

 = (2 \sin( \alpha )  + 3)(2 \sin( \alpha )  - 1) = 0

either \:  \: (2 \sin( \alpha )  + 3) = 0 \:  \: or \:  \: (2 \sin( \alpha )  - 1) = 0

either \:  \:  \sin( \alpha ) =  - \frac{3}{2}   \:  \: or \:  \:   \sin( \alpha )  =  \frac{1}{2}

we know that, sin(θ)€[-1,1], so, sin(θ) can not equals to -3/2, i.e., -1.5

so,

 \sin( \alpha )  =  \frac{1}{2}

 =  \alpha  =  \frac{\pi}{6}

i.e, α=30 degree

Similar questions