What is value of sin15
Answers
Answered by
1
The value of sin(15°)=3√−122√sin(15°)=3−122. We may get this value by any of the following methods:
Using the value of sin 30°.
For all values of the angle A we know that,
(sin(A/2)+cos(A/2))2=sin2A/2+cos2A/2+2sin(A/2)cos(A/2)=1+sinA(sin(A/2)+cos(A/2))2=sin2A/2+cos2A/2+2sin(A/2)cos(A/2)=1+sinA
Therefore, sin(A/2)+cos(A/2)=±√(1+sinA)sin(A/2)+cos(A/2)=±√(1+sinA), [taking square root on both the sides]
Now, let A = 30° then, A/2=30°/2=15°A/2=30°/2=15° and from the above equation we get,
sin15°+cos15°=±√(1+sin30°)sin15°+cos15°=±√(1+sin30°) ….. (i)
Similarly, for all values of the angle A we know that,
(sin(A/2)−cos(A/2))2=sin(A/2)2+cos(A/2)2−2sin(A/2)cos(A/2)=1−sinA(sin(A/2)−cos(A/2))2=sin(A/2)2+cos(A/2)2−2sin(A/2)cos(A/2)=1−sinA
Therefore, sin(A/2)+cos(A/2)=±√(1−sinA)sin(A/2)+cos(A/2)=±√(1−sinA) , [taking square root on both the sides]
Now, let A = 30° then, A/2=30°/2=15°A/2=30°/2=15° and from the above equation we get,
sin15°−cos15°=±√(1−sin30°)sin15°−cos15°=±√(1−sin30°) …… (ii)
Clearly, sin15°>0sin15°>0 and cos15˚>0cos15˚>0
Therefore, sin15°+cos15°>0sin15°+cos15°>0
Therefore, from (i) we get,
sin15°+cos15°=√(1+sin30°)sin15°+cos15°=√(1+sin30°) ..... (iii)
Again, sin15°−cos15°=√2((1√2)sin15˚−(1√2)cos15˚)sin15°−cos15°=√2((1√2)sin15˚−(1√2)cos15˚)
or, sin15°−cos15°=√2(cos45°sin15˚−sin45°cos15°)sin15°−cos15°=√2(cos45°sin15˚−sin45°cos15°)
or, sin15°−cos15°=√2sin(15˚−45˚)sin15°−cos15°=√2sin(15˚−45˚)
or, sin15°−cos15°=√2sin(−30˚)sin15°−cos15°=√2sin(−30˚)
or, sin15°−cos15°=−√2sin30°sin15°−cos15°=−√2sin30°
or, sin15°−cos15°=−√2/2sin15°−cos15°=−√2/2
or, sin15°−cos15°=−1/√2sin15°−cos15°=−1/√2
Thus,sin15°−cos15°<0sin15°−cos15°<0
Therefore, from (ii) we get, sin15°−cos15°=−√(1−sin30°)sin15°−cos15°=−√(1−sin30°) ..... (iv)
Now, adding (iii) and (iv) we get,
2sin15°=√(1+1/2)−√(1−1/2)2sin15°=√(1+1/2)−√(1−1/2)
2sin15°=((√3)−1)/√22sin15°=((√3)−1)/√2
sin(15°)=3√−122√sin(15°)=3−122
Therefore, sin(15°)=3√−122√.
Using the value of sin 30°.
For all values of the angle A we know that,
(sin(A/2)+cos(A/2))2=sin2A/2+cos2A/2+2sin(A/2)cos(A/2)=1+sinA(sin(A/2)+cos(A/2))2=sin2A/2+cos2A/2+2sin(A/2)cos(A/2)=1+sinA
Therefore, sin(A/2)+cos(A/2)=±√(1+sinA)sin(A/2)+cos(A/2)=±√(1+sinA), [taking square root on both the sides]
Now, let A = 30° then, A/2=30°/2=15°A/2=30°/2=15° and from the above equation we get,
sin15°+cos15°=±√(1+sin30°)sin15°+cos15°=±√(1+sin30°) ….. (i)
Similarly, for all values of the angle A we know that,
(sin(A/2)−cos(A/2))2=sin(A/2)2+cos(A/2)2−2sin(A/2)cos(A/2)=1−sinA(sin(A/2)−cos(A/2))2=sin(A/2)2+cos(A/2)2−2sin(A/2)cos(A/2)=1−sinA
Therefore, sin(A/2)+cos(A/2)=±√(1−sinA)sin(A/2)+cos(A/2)=±√(1−sinA) , [taking square root on both the sides]
Now, let A = 30° then, A/2=30°/2=15°A/2=30°/2=15° and from the above equation we get,
sin15°−cos15°=±√(1−sin30°)sin15°−cos15°=±√(1−sin30°) …… (ii)
Clearly, sin15°>0sin15°>0 and cos15˚>0cos15˚>0
Therefore, sin15°+cos15°>0sin15°+cos15°>0
Therefore, from (i) we get,
sin15°+cos15°=√(1+sin30°)sin15°+cos15°=√(1+sin30°) ..... (iii)
Again, sin15°−cos15°=√2((1√2)sin15˚−(1√2)cos15˚)sin15°−cos15°=√2((1√2)sin15˚−(1√2)cos15˚)
or, sin15°−cos15°=√2(cos45°sin15˚−sin45°cos15°)sin15°−cos15°=√2(cos45°sin15˚−sin45°cos15°)
or, sin15°−cos15°=√2sin(15˚−45˚)sin15°−cos15°=√2sin(15˚−45˚)
or, sin15°−cos15°=√2sin(−30˚)sin15°−cos15°=√2sin(−30˚)
or, sin15°−cos15°=−√2sin30°sin15°−cos15°=−√2sin30°
or, sin15°−cos15°=−√2/2sin15°−cos15°=−√2/2
or, sin15°−cos15°=−1/√2sin15°−cos15°=−1/√2
Thus,sin15°−cos15°<0sin15°−cos15°<0
Therefore, from (ii) we get, sin15°−cos15°=−√(1−sin30°)sin15°−cos15°=−√(1−sin30°) ..... (iv)
Now, adding (iii) and (iv) we get,
2sin15°=√(1+1/2)−√(1−1/2)2sin15°=√(1+1/2)−√(1−1/2)
2sin15°=((√3)−1)/√22sin15°=((√3)−1)/√2
sin(15°)=3√−122√sin(15°)=3−122
Therefore, sin(15°)=3√−122√.
karpagamnanu:
pls make me a brainlist
Answered by
1
Answer:
Step-by-step explanation:
sin45--sin 30
1/√2--1/2
=2-√2/2√2
Similar questions