Math, asked by sujal6617, 3 months ago

what is value of t25 and t5 for A.P 9,14,19.... give explinetion

Answers

Answered by Annkozhikottu
2

Answer:

The ap is

9,14,19...

t1=9

d=14-9=5

t25=a+(25-1)×d

=9+(24×5)

=9+120

=129

t5=a+(5-1)×d

=9+(4×5)

= 9+20

=29

note that 'n'th term =a+(n-1)×d

Step-by-step explanation:

Hope it helps...

PLEZZ mark me brainlist...

Answered by Seafairy
83

{\large{\text{\underline{\underline{\red{Given :}}}}}}

\text{9,14,19 are in A.P}

{\large{\text{\underline{\underline{\red{To Find :}}}}}}

t_{25}\:\:and\:\:t_5

{\large{\text{\underline{\underline{\red{Formula Applied :}}}}}}

t_n=a+(n-1)d

{\large{\text{\underline{\underline{\red{Solution :}}}}}}

\text{It's given that 9,14,19 are in A.P  hence,}

a \implies \text{first term} \implies \bf 9

d\implies\text{common difference} \implies t_2-t_1 = 14-9 \implies \bf 5

\bigstar{\text{\red{Let's Find $t_5$}}}

n\implies \text{No.of.term} \implies 5

\implies t_n = a+(n-1)d

\implies t_5=9+(5-1)5

\implies t_5 = 9+(4)5

\implies t_5=9+20

\implies t_5 = 29

\bigstar{\red{\text{Let's find $t_{25}$}}}

\implies t_{25}=a+(n-1)d

\implies t_{25}=9+(25-1)5

\implies t_{25}=9+(24)5

\implies t_{25} = 9+120

\implies t_{25} = 129

Similar questions
Math, 1 month ago