Math, asked by simrandhillon9859, 1 year ago

What is ∫x(x+3)12dx?

Answers

Answered by CEOEkanshNimbalkar
9
Answer : 4 x{}^{3} + 18x {}^{2} + C

Step by step explanation :

\int \times (x + 3) \times 12 \: dx

Use property of integral

\int a \times f(x)dx = a \times \int f(x) \: dx

 = > 12 \times \int x \times (x + 3) \: dx

Distribute x through the parenthesis by multiplying each term in the parenthesis by x

 = > 12 \times \int x \times x + 3x \: dx

Calculate the product

 = > 12 \times \int x {}^{2} + 3x \: dx

Use property of integral

\int f(x) + - g(x) \: dx = \int f(x)dx + - \int g(x) \: dx

 = > 12( \int x {}^{2} dx + \int 3x \: dx

Using  \int x {}^{n} dx = \frac{x {}^{n + 1} }{n + 1} \: \:, \: n≠ - 1 solve the integral.

 = > 12( \frac{x {}^{2 + 1} }{2 + 1} +\int 3x \: dx)

Add the numbers

 = > 12( \frac{x {}^{3} }{3} + \int 3x \: dx)

Calculate the indefinite integral

Use property of integral

 \int \: a \times f(x) \: dx = a \times \int f(x) \: dx

 = > 12( \frac{x {}^{3} }{3} + 3 \times \int x \: dx)

Using  c\intx \: dx = \frac{x {}^{2} }{2} , solve the integral.

 = > 12( \frac{x {}^{3} }{3} + 3 \times \frac{x {}^{2} }{2} )

Calculate the product.

 = > 12( \frac{x {}^{3} }{3} + \frac{3x {}^{2} }{2} )

Distribute 12 through the parenthesis by multiplying each term in the parenthesis by 12

 = > 12 \times \frac{x {}^{3} }{3} + 12 \times \frac{3x {}^{2} }{2}

Reduce the numbers with the greatest common divisor 3

 = > 4x {}^{3} + 12 \times \frac{3x {}^{2} }{2}

Reduce numbers with the greatest common divisor 2

 = > 4x {}^{3} + 6 \times 3x {}^{2}

Calculate the product

 = > 4x {}^{3} + 18x {}^{2}

Add the constant of integration.

 = > 4x {}^{3} + 18x {}^{2} + C
Answered by Steph0303
2

Answer:

4x³ + 18x² + C

Step-by-step explanation:

⇒ ∫ 12x ( x + 3 ) dx

Multiplying 12x inside the bracket we get,

⇒ ∫ ( 12x² + 36x ) dx

Splitting the integrals we get,

⇒ ∫ 12x². dx + ∫ 36x . dx

Integrating we get,

⇒ 12x³/3 + 36x²/2 + C

⇒ 4x³ + 18x² + C

This is the required solution.

Hope it helped !!

Similar questions