Chemistry, asked by Anonymous, 3 months ago

what is zero order reaction​

Answers

Answered by amansharma264
30

EXPLANATION.

Zero order reaction.

A ⇒ Products.

Rate of Reaction [ROR] = r = k[A]⁰.

Rate = r = k (Rate Constant).

Integrate rate law.

A ⇒ Products (99%). [Assume].

Rate = r = -d[A]/dt.

⇒ -d[A]/dt = k[A]⁰.

⇒ d[A] = - kdt.

⇒ dA = -kdt.

\sf \implies \displaystyle \int_{A_{0}}^{A} dA \ = -\int\limits^t_0 {kdt} \,

\sf \implies \bigg[A\bigg]_{A_{0}}^{A} \ = -k \bigg[t \bigg]_{0}^{t}

⇒ A - A₀ = -k(t - 0).

⇒ A - A₀ = -kt.

A = A₀ - kt.

A₀ = Initial concentration of A.

A = Concentration of A at any time t.

K = Rate constant.

T = Time in which concentration from A₀ to A.

Half life of reaction Or \sf (t_{1/2}).

Time in which reaction completes 50%.

at t = t(1/2).

⇒ A = A₀/2.

⇒ A = A₀ - kt.

\sf \implies \dfrac{A_{0}}{2} = A_{0} - kt_{1/2}

\sf \implies kt_{1/2} = A_{0}/2

\sf \implies t_{1/2} = A_{0}/2k

Life time of reaction.

Time in which 100% reaction complete.

\sf \implies t = t_{f}

⇒ A = 0.

⇒ A = A₀ - kt.

⇒ 0 = A₀ - kt(f).

t(f) = A₀/k.

Answered by jaswasri2006
3

Zero order reaction.

A ⇒ Products.

Rate of Reaction [ROR] = r = k[A]⁰.

Rate = r = k (Rate Constant).

Integrate rate law.

A ⇒ Products (99%). [Assume].

Rate = r = -d[A]/dt.

⇒ -d[A]/dt = k[A]⁰.

⇒ d[A] = - kdt.

⇒ dA = -kdt.

 \tiny\sf \implies \displaystyle \int_{A_{0}}^{A} dA \ = -\int\limits^t_0 {kdt} \,⟹∫ </h2><p>A </p><p>0</p><p>	</p><p> </p><p>A</p><p>	</p><p> dA =− </p><p>0</p><p>∫</p><p>t</p><p>	</p><p> kdt

\sf \implies \bigg[A\bigg]_{A_{0}}^{A} \ = -k \bigg[t \bigg]_{0}^{t}⟹[A] </p><p>A </p><p>0</p><p>	</p><p> </p><p>A</p><p>	</p><p>  =−k[t] </p><p>0</p><p>t

⇒ A - A₀ = -k(t - 0).

⇒ A - A₀ = -kt.

⇒ A = A₀ - kt.

A₀ = Initial concentration of A.

A = Concentration of A at any time t.

K = Rate constant.

T = Time in which concentration from A₀ to A.

Half life of reaction Or

\sf (t_{1/2}).(t </p><p>1/2</p><p>	</p><p> ).

Time in which reaction completes 50%.

at t = t(1/2).

⇒ A = A₀/2.

⇒ A = A₀ - kt.

\sf \implies \dfrac{A_{0}}{2} = A_{0} - kt_{1/2}⟹ </p><p>2</p><p>A </p><p>0</p><p>	</p><p> </p><p>	</p><p> =A </p><p>0</p><p>	</p><p> −kt </p><p>1/2

\sf \implies kt_{1/2} = A_{0}/2⟹kt </p><p>1/2</p><p>	</p><p> =A </p><p>0</p><p>	</p><p> /2

\sf \implies t_{1/2} = A_{0}/2k⟹t </p><p>1/2</p><p>	</p><p> =A </p><p>0</p><p>	</p><p> /2k

Life time of reaction.

Time in which 100% reaction complete.

\sf \implies t = t_{f}⟹t=t </p><p>f

⇒ A = 0.

⇒ A = A₀ - kt.

⇒ 0 = A₀ - kt(f).

⇒ t(f) = A₀/k.

Similar questions