Math, asked by djhaider2011, 9 months ago

what isthe answer of (197*203)using identity

Answers

Answered by amankumaraman11
0

Here are some identities useful in solving Question like above (one) :

 \bullet \:  \rm(a + b)(a + b) =   {a}^{2}  + 2ab +  {b}^{2}\\ \bullet \: \rm (a - b)(a - b)  =  {a}^{2} - 2ab +  {b}^{2}   \\  \small\bullet \:  \rm (a + x)(a + y)  =  {(a)}^{2} + (x + y)a + xy \\ \bullet \: \rm (a - b)(a + b) =  {(a)}^{2}  -  {(b)}^{2}  \\   \small\bullet \:  \rm(a + b)(a + b)(a + b) =  {a}^{3}  +  {b}^{3}  +  {3a}^{2} b  + {3ab}^{2}  \\ \small\bullet \:  \rm(a  -  b)(a  -  b)(a  -  b) =  {a}^{3}  -  {b}^{3}  - 3ab(a - b)

Now,

  • Simplifying the (given) expression as :

 \huge \dag \:  \:  \:  \tt197 \times 203 \\  \\  \large  \to   \:  \sf(200 - 3) \times (200 + 3) \\   \\ \mapsto \text{Here, This expression is in form of }\\ \tt{(a + b)(a - b)}. \\   \\ \hookrightarrow \text{ Thus, } \tt{ {4}^{th} } \text{ identity is applicable, i.e.}\\ \:  \:  \boxed{ \tt {a}^{2} -  {b}^{2}    \:  \:  \:  }\\  \\   \Huge  \to   \:  \sf {(200)}^{2}  -  {(3)}^{2}  \\ \\   \Huge  \to   \:   \: \sf40000 - 9 \\ \\    \Huge  \to   \:  \:  \sf \red{39991}

Hence,

  • 197 × 203 = 39991
Similar questions