Math, asked by prawinkrishna6458, 1 month ago

What least must to be subtracted from the following to make them a perfect square? 361298

Answers

Answered by Nonutweety
3

Step-by-step explanation:

square root of 361298 by long division method-

6 | 36 12 98 ( 601

| 36

-----------------

1201 | 00 12 98

| 12 01

----------------

97

-----------------

Remainder = 97

Therefore if we subtract 97 from 361298, it will be a perfect square of 601.

361298 - 97 = 361201 ( 361201 = 601^2)

Therefore 97 is the least number which must be subtracted from 361298 to make it a perfect square.

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given number is 361298.

Since, we have to find the least number that must be subtracted from the 361298 to make it a perfect square.

So, we use long division to find the remainder that should be subtracted from the given number.

Thus,

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\:601 \:\:}}}\\ {\underline{\sf{6}}}& {\sf{\:\:361298 \:\:}} \\{\sf{}}& \underline{\sf{\:\:36 \: \:  \:   \:  \:  \:  \ }} \\ {\underline{\sf{1201}}}& {\sf{\:\: \: \: \: \: 001298 \:  \:  \: \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \: \:  \: 1201\:  \:}} \\ {\underline{\sf{}}}& {\sf{\: \:   \:  \:  \:  \:  \:  \: 97\:\:}}{\sf{}}&{\sf{\:\:\:\:}}\end{array}\end{gathered}

So, it means 97 must be subtracted from 361298 to make it a perfect square.

Thus, Required number is 361298 - 97 = 361201.

So,

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\:601 \:\:}}}\\ {\underline{\sf{6}}}& {\sf{\:\:361201 \:\:}} \\{\sf{}}& \underline{\sf{\:\:36 \: \:  \:   \:  \:  \:  \ }} \\ {\underline{\sf{1201}}}& {\sf{\:\: \: \: \: \: 001201 \:  \:  \: \:\:}} \\{\sf{}}& \underline{\sf{\:\: \: \: \:  \: 1201\:  \:}} \\ {\underline{\sf{}}}& {\sf{\: \:   \:  \:  \:  \:  \:  \: 00\:\:}}{\sf{}}&{\sf{\:\:\:\:}}\end{array}\end{gathered}

Hence,

\rm \implies\:\boxed{ \tt{ \:  \sqrt{361201} = 601 \: }}

Similar questions