Math, asked by Riya090914, 4 months ago

What length of tarpaulin 3 m wide will be required to make conical tent of height 8 m and base radius 6m? Assume that the extra length of material that will be required for stitching margins and wastage in cutting is approximately 20 cm (Use = 3.14).​

Answers

Answered by Anonymous
14

Answer:

h = Height of tent = 8 m

r = Base radius = 6 m

Therefore,

l= √r²+h² =10 m

Curved surface area of the cone = πrl=3.14×6×10m²

Therefore, length of 3 m wide tarpaulin required = 3.14×6×10/3=62.8 m

Extra length required = 0.2 m

Therefore, total length required = 63m

☺️☺️

Answered by shaktisrivastava1234
671

 \huge { \boxed{\mathbb{ANSWER}}}

 \large \underline{ \underline{ \frak{ \color{magenta}{Given:}}}}

 \mapsto \sf{Radius(r)  \: of  \: conical  \: tent=6m}

 \mapsto \sf{Height(h) \: of  \: conical  \: tent=8m}

 \large \underline{ \underline{ \frak{ \color{black}{To  \: find:}}}}

 \leadsto \sf{Total \:  length  \: of  \: tarpaulin. }

 \large \underline{ \underline{ \frak{ \color{orange}{Formula  \: required:}}}}

  \dag\underline{ \green{\boxed{ \pink{ \rm{Curved \:  surface  \: area  \: of  \: cone=\pi rl}}}}}

  \dag\underline{ \green{\boxed{ \pink{ \rm{Slant  \: height (l) \: of \: conical \: tent= \sqrt{ {r}^{2}  +  {h}^{2} } }}}}}

 \large \underline{ \underline{ \frak{ \color{silver}{According \:  to  \: Question:}}}}

 \bf \underline{Let's \:  start  \: now!!!}

{  \dashrightarrow \sf{Slant  \: height (l) \: of \: conical \: tent= \sqrt{ {r}^{2}  +  {h}^{2} } }}

{ \dashrightarrow \sf{Slant  \: height (l) \: of \: conical \: tent= \sqrt{ {(8)}^{2}  +  {(6)}^{2} } }}

{ \dashrightarrow \sf{Slant  \: height (l) \: of \: conical \: tent= \sqrt{ 64 + 36 } }}

{ \dashrightarrow \sf{Slant  \: height (l) \: of \: conical \: tent= \sqrt{ 100 } }}

{ \dashrightarrow \sf{Slant  \: height (l) \: of \: conical \: tent= 10m }}

 \bf \underline{Then, }

{  \dashrightarrow \sf{Curved \:  surface  \: area  \: of  \: conical \: tent=\pi rl}}

{  \dashrightarrow \sf{Curved \:  surface  \: area  \: of  \: conical \: tent= (3.14 \times 6 \times 10) {m}^{2} }}

{  \dashrightarrow \sf{Curved \:  surface  \: area  \: of  \: conical \: tent= 188.4{m}^{2} }}

 \bf \underline{Now, }

 \dashrightarrow \sf{Area_{(tent)}=Area_{(tarpaulin)}}

{ \dashrightarrow \sf{Area_{(tent)} = (length) \times breadth}}

{ \dashrightarrow \sf{Area_{(tent)} = length \times 3}}

{ \dashrightarrow \sf{length \: of \: tarpaulin =  \frac{1}{3}(Area \:  of  \: tent) }}

{ \dashrightarrow \sf{length \: of \: tarpaulin =  \frac{1}{3} \times 188.4m }}

{ \dashrightarrow \sf{length \: of \: tarpaulin = 62.8m }}

 \bf \underline{Again, }

 {\dashrightarrow \sf{Total \:  length \:  of  \: tarpaulin=length  \: of  \: tarpaulin+Margin}}

 {\dashrightarrow \sf{Total \:  length \:  of  \: tarpaulin=62.8m + 20cm}}

 {\dashrightarrow \sf{Total \:  length \:  of  \: tarpaulin=62.8m + 20 \times  \frac{1}{100}m }}

 {\dashrightarrow \sf{Total \:  length \:  of  \: tarpaulin=62.8m + 2 \cancel0 \times  \frac{1}{10 \cancel0}m }}

 {\dashrightarrow \sf{Total \:  length \:  of  \: tarpaulin=62.8m +0.2m}}

 {\dashrightarrow \sf{Total \:  length \:  of  \: tarpaulin=63.0m}}

 \bf \underline{Hence, }

 \:  \:  \:  \:  \:    \star\underline{  \green {\boxed{ \red{ \rm{Total \:  length \:  of  \: tarpaulin=63.0m}}}}}

______________________________________

Attachments:
Similar questions