Math, asked by ak0352180, 9 months ago

What length of trapaulin 3m wide is required to make a conical tent of
height 8m and base radius 6m? Assume that the extra length of material
that will be required for stitching margins and wastage in cutting is
approximately 20 cm.
(use n = 3.14)​

Answers

Answered by Anonymous
5

Trapaulin will be csa .

so , finding csa ;

CSA =

\pi \: r \: l(where \:  l =  \sqrt{ {h}^{2}  +  {r}^{2}  }

Radius = 6m

height = 8m

slanting edge = l

we know,

l =  \sqrt{ {h}^{2} +  {r}^{2}  }  \\ l =  \sqrt{ {8}^{2} +  {6}^{2}  }  \\ l =  \sqrt{64 + 36}  \\ l =  \sqrt{100}  \\ l = 10

l=10m

csa = \pi \: r \:  l\\ csa = (3.14 \times 6 \times 10) \\ csa = 188. {40m}^{2}  \\

CSA=188.4m^2

Now,

Area of trapezium = area of tent

length×breadth = area of tent

lenth × 3= Area of tent .

length =  \frac{1}{3} (area \: of \: tent) \\  length =  \frac{188.4}{3}  \\ l = 62.8

Length = 62.8

Now given margin is 20cm

Total length = length calculated + margin

TL = 62.8+20cm

tl = 62.8m + 20 \frac{1}{100}m \\ tl = 62.8 + 0.2 \\ tl = 63m

Answered by GalacticCluster
1

Answer:

  • Height = 8m
  • Radius = 6m

 \\  \sf \: Slant \:  \: height \:  =  \sqrt{ {r}^{2} +  {h}^{2}  }  \\  \\  \\  \implies \sf \:  \sqrt{ {6}^{2}  +  {8}^{2} }  \\  \\  \\  \implies \sf \:  \sqrt{100}  \\  \\  \\  \implies \sf \blue{10 \: m} \\  \\

____________________________

 \\   \large{ \boxed{ \sf{ \green{curved \:  \: surface \:  \: area = \pi \:  \:rl}}}} \\  \\  \\  \implies \sf \:  \frac{22}{7}  \times 6  \times 10 \\  \\  \\  \implies \sf \red{188.4 \:  {m}^{2} } \\

  • Effective length ( 1 - 0.2 ) m
  • Breadth = 3m

  \\  \sf \: Area \:  \: of \:  \: sheet = Csa \:  \: of \:  \: tent \\  \\  \\ \sf ( \: 1 - 0.2 \: m) \times 3 = 188.4 \\  \\  \\  \implies \sf \: 1 - 0.2 = 62.8 \\  \\  \\   \sf\implies \pink{l = 63m} \\

Similar questions