Biology, asked by ilovedonuts25, 1 day ago

what makes the genetic modification of corn different from that of the mouse (at least for mammals)?​

Answers

Answered by bhatakash001
0

Answer:

Corn is one of humankind's earliest innovations. It was domesticated 10,000 years ago when humans learned to cross-pollinate plants and slowly turned a scraggly nondescript grass called teosinte into plump, productive modern corn (Figure 1). As needs change, so does plant breeding. Today, while biotech super-giants manipulate corn genetics to satisfy farmer desires and a global market, indigenous Mexican farmers do so to fulfill individual needs. Although the tools differ, the goal remains the same—to cultivate desirable traits.

Figure 1

Figure 1

Crossing for Kernels

Plant breeding was once restricted to sexually compatible plants, and generations of offspring were selectively bred to create unique varieties. In fact, corn, along with rice and wheat—today's global crop staples—would not exist without such techniques. With the goal of ever-widening the pool of genetic diversity, conventional plant breeding has gotten more technologically savvy in recent years. For example, realizing that natural mutants often introduce valuable traits, scientists turned to chemicals and irradiation to speed the creation of mutants. From test-tube plants derived from sexually incompatible crosses to the use of molecular genetic markers to identify interesting hereditary traits, the divide between engineering and genetics was narrowing long before kingdom boundaries were crossed.

But when geneticists began to explore microorganisms for traits of interest—such as Bacillus thuringiensis (Bt) genes that produce a protein lethal to some crop pests—they triggered an uproar over ethical, scientific, and environmental concerns that continues today.

Answered by kondashivani19
0

Answer:

mark me brillianist please

Explanation:

Corn is one of humankind's earliest innovations. It was domesticated 10,000 years ago when humans learned to cross-pollinate plants and slowly turned a scraggly nondescript grass called teosinte into plump, productive modern corn (Figure 1). As needs change, so does plant breeding. Today, while biotech super-giants manipulate corn genetics to satisfy farmer desires and a global market, indigenous Mexican farmers do so to fulfill individual needs. Although the tools differ, the goal remains the same—to cultivate desirable traits.

Figure 1

Figure 1

Crossing for Kernels

Plant breeding was once restricted to sexually compatible plants, and generations of offspring were selectively bred to create unique varieties. In fact, corn, along with rice and wheat—today's global crop staples—would not exist without such techniques. With the goal of ever-widening the pool of genetic diversity, conventional plant breeding has gotten more technologically savvy in recent years. For example, realizing that natural mutants often introduce valuable traits, scientists turned to chemicals and irradiation to speed the creation of mutants. From test-tube plants derived from sexually incompatible crosses to the use of molecular genetic markers to identify interesting hereditary traits, the divide between engineering and genetics was narrowing long before kingdom boundaries were crossed.

But when geneticists began to explore microorganisms for traits of interest—such as Bacillus thuringiensis (Bt) genes that produce a protein lethal to some crop pests—they triggered an uproar over ethical, scientific, and environmental concerns that continues today. (See Box 1.)

Box 1. Bt Technology

Bacillus thuringiensis, a soil bacterium, produces several crystal (Cry) protein toxins that destroy the gut of invading pests, such as larval caterpillars. So far, over 50 cry genes have been identified and found to affect insect orders differently.

Considered safe to humans, mammals, and most insects, Bt has been a popular pesticidal spray since the 1960s because it had little chance of unintended effects. Engineering the gene into corn, however, caused an unexpected public backlash. “We thought it was going to be the greatest thing since sliced bread,” says Guy Cardineau, agricultural biotechnologist at Arizona State University. “Here's a way to withstand insect pressure, eliminate the use of pesticides, and Bt spray was widely used in organic agriculture,” he adds. The Bt wrangle illustrates how differently a product and a process can be regarded.

After the expensive development process, today's concern is that broad-scale planting of Bt corn will render the toxin ineffective over time. Pests can gradually build resistance to any pesticide, and so the United States Environmental Protection Agency (EPA) requires that 20% of Bt field areas be planted to non-Bt corn to avoid such pressures. But humans have to follow the rules. A recent report from the Center for Science in the Public Interest shows that almost 20% of farmers in the United States Corn Belt are violating EPA standards by overplanting Bt corn, causing some to question the regulations and enforcement that will be necessary for certain GM crops.

Similar questions