Math, asked by chaitanya606629, 9 months ago

what might be value would be​

Attachments:

Answers

Answered by BrainlyPopularman
61

Question :

  \\  \sf  \: If \:  \: :  \: \: x =  \sqrt{3 +  \sqrt{3  + \sqrt{3 + ....... \infty } } }   \:  \:  \:  \: then  - \\

  \\  \sf (1) \:  \:  {x}^{2} - x + 3 = 0   \\

  \\  \sf (3) \:  \:  {x}^{2} - x  -  3 = 0   \\

ANSWER :

GIVEN :

  \\  \sf  \:\:  \: {   \huge{.}} \: \: \: x =  \sqrt{3 +  \sqrt{3  + \sqrt{3 + ....... \infty } } }   \\

TO FIND :

'x' in quadratic form = ?

SOLUTION :

  \\  \sf  \implies  x =  \sqrt{3 +  \sqrt{3  + \sqrt{3 + ....... \infty } } }   \\

  \\  \sf  \implies  x =  \sqrt{3 +  \left[ \sqrt{3  + \sqrt{3 + ....... \infty } } \right] }   \\

• We should write this as –

  \\  \sf  \implies  x =  \sqrt{3 +  x }   \\

• square on both sides –

  \\  \sf  \implies  x {}^{2}  =  {3 +  x }   \\

  \\  \sf  \implies \large   \boxed{ \sf \: x {}^{2}  - x - 3 = 0}\\

Hence Option (3) is correct .

Answered by Anonymous
77

{\huge{\red{\sf{Given}}}}\begin{cases}\leadsto\bf{x=\sqrt{3+\sqrt{3+\sqrt{3+...\infty}}}}  \end{cases}

{\huge{\red{\sf{To\:Find}}}}\begin{cases}\leadsto\bf{(1)x^{2}-x+3}\\\bf{(3)x^{2}-x-3} \\\leadsto\bf{Correct\: option\: between\:them}\end{cases}

\huge\red{\underline{\bf{\green{Answer}}}}

\sf{\red{\hookrightarrow Taking\:the\:given\: equation,}}

\sf{\implies x =\sqrt{3+\sqrt{3+\sqrt{3+.....\infty}}}}

\sf{\implies x =\sqrt{3+x}}

\sf{\purple{Since\: x =\sqrt{3+\sqrt{3+\sqrt{3+...\infty}}}}}

\sf{\pink{\mapsto Squaring\:both\:sides}}

\sf{\implies x^{2}=3+x}

\sf{\implies x^{2}-x-3=0+0}

{\underline{\boxed{\red{\bf{\therefore x^{2}-x-3=0}}}}}

{\underline{\underline{\orange{\bf{Hence\:correct\: option\:is\:(3)}}}}}

Similar questions