what must be added to 6x^5+5x^4+11x^3-3x^2+x+5 so that it may be exactly divisible by 3x^2-2x+4
Answers
GIVEN :
The polynomial is divisible by
TO FIND :
The remainder of is divisible by
SOLUTION :
Given that the polynomial is is divisible by [tex]3x^2-2x +4 [/tex]
________________________
)
(-)
---------------------------------------
(-)
------------------------------------
(-)
--------------------------------------------
(-)
---------------------------------
-17x + 17
-----------------------------------
∴ Additive inverse of -17x + 17 is 17x - 17
Hence 17x - 17 is added to ,so that the polynomial so obtained is exactly divisible by
Answer:
GIVEN :
The polynomial 6x^5+5x^4+11x^3-3x^2+x+56x
5
+5x
4
+11x
3
−3x
2
+x+5 is divisible by 3x^2-2x+43x
2
−2x+4
TO FIND :
The remainder of 6x^5+5x^4+11x^3-3x^2+x+56x
5
+5x
4
+11x
3
−3x
2
+x+5 is divisible by 3x^2-2x+43x
2
−2x+4
SOLUTION :
Given that the polynomial is 6x^5+5x^4+11x^3-3x^2+x+56x
5
+5x
4
+11x
3
−3x
2
+x+5 is divisible by 3x^2-2x +43x
2
−2x+4
2x^3+3x^2+3x-32x
3
+3x
2
+3x−3
________________________
3x^2-2x +43x
2
−2x+4 ) 6x^5+5x^4+11x^3-3x^2+x+56x
5
+5x
4
+11x
3
−3x
2
+x+5
6x^5- 4x^4+ 8x^36x
5
−4x
4
+8x
3
(-)
---------------------------------------
9x^4+3x^3-3x^29x
4
+3x
3
−3x
2
9x^4-6x^3+12x^29x
4
−6x
3
+12x
2
(-)
------------------------------------
9x^3-15x^2+ x9x
3
−15x
2
+x
9x^3- 6x^2+12x9x
3
−6x
2
+12x (-)
--------------------------------------------
-9x^2- 11x + 5−9x
2
−11x+5
-9x^2+ 6x -12−9x
2
+6x−12 (-)
---------------------------------
-17x + 17
-----------------------------------
∴ Additive inverse of -17x + 17 is 17x - 17
Hence 17x - 17 is added to 6x^5+5x^4+11x^3-3x^2+x+56x
5
+5x
4
+11x
3
−3x
2
+x+5 ,so that the polynomial so obtained is exactly divisible by 3x^2-2x +43x
2
−2x+4
Step-by-step explanation:
this is your answer